검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We examine a single machine scheduling problem with step-improving jobs in which job processing times decrease step-wisely over time according to their starting times. The objective is to minimize total completion time which is defined as the sum of completion times of jobs. The total completion time is frequently considered as an objective because it is highly related to the total time spent by jobs in the system as well as work-in-progress. Many applications of this problem can be observed in the real world such as data gathering networks, system upgrades or technological shock, and production lines operated with part-time workers in each shift. Our goal is to develop a scheduling algorithm that can provide an optimal solution. For this, we present an efficient branch and bound algorithm with an assignment-based node design and tight lower bounds that can prune branch and bound nodes at early stages and accordingly reduce the computation time. In numerical experiments well designed to consider various scenarios, it is shown that the proposed algorithm outperforms the existing method and can solve practical problems within reasonable computation time.
        4,000원
        2.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We focus on the fire scheduling problem (FSP), the problem of determining the sequence of targets to be fired at, for the objective of minimizing makespan to achieve tactical goals. In this paper, we assume that there are m available weapons to fire at n targets (> m) and the weapons are already allocated to targets. One weapon or multiple weapons can fire at one target and these fire operations should start simultaneously while the finish time of them may be different. We develop several dominance properties and a lower bound for the problem, and suggest a branch and bound algorithm implementing them. Also, In addition, heuristic algorithms that can be used for obtaining an initial upper bound in the B&B algorithm and for obtaining good solutions in a short time were developed. Computational experiments are performed on randomly generated test problems and results show that the suggested algorithm solves problems of a medium size in a reasonable amount of computation time. The proposed lower bound, the dominance properties, and the heuristics for upper bound are tested in B&B respectively, and the result showed that lower bound is effective to fathoming nodes and the dominance properties and heuristics also worked well. Also, it is showed that the CPU time required by this algorithm increases rapidly as the problem size increases. Therefore, the suggested B&B algorithm would be limited to solve large size problems. However, the employed heuristic algorithms can be effectively used in the B&B algorithm and can give good solutions for large problems within a few seconds.
        4,000원
        3.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we consider a two-machine re-entrant permutation flowshop scheduling problem with the objective of minimizing total flowtime, and suggest branch and bound algorithms for the scheduling problem. In this scheduling problem, each job must be p
        4,000원
        4.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper considers the simultaneously firing model for the artillery operations. The objective of this paper is to find the optimal fire sequence minimizing the final completion time of the firing missions of multiple artillery units for multiple target
        4,000원
        5.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, a best-first branch and bound algorithm based upon the bottom-up approach for the unweighted unconstrained two-dimensional cutting problem is proposed to find the optimal solution to the problem. The algorithm uses simple and effective meth
        4,000원