Discrete-time Queueing models are frequently utilized to analyze the performance of computing and communication systems. The length of busy period is one of important performance measures for such systems. In this paper, we consider the busy period of the Geo/Geo/1/K queue with a single vacation. We derive the moments of the length of the busy (idle) period, the number of customers who arrive and enter the system during the busy (idle) period and the number of customers who arrive but are lost due to no vacancies in the system for both early arrival system (EAS) and late arrival system (LAS). In order to do this, recursive equations for the joint probability generating function of the busy period of the Geo/Geo/1/K queue starting with n, 1≤n≤K, customers, the number of customers who arrive and enter the system, and arrive but are lost during that busy period are constructed. Using the result of the busy period analysis, we also numerically study differences of various performance measures between EAS and LAS. This numerical study shows that the performance gap between EAS and LAS increases as the system capacity K decrease, and the arrival rate (probability) approaches the service rate (probability). This performance gap also decreases as the vacation rate (probability) decrease, but it does not shrink to zero.
Using the known result of the expected busy period for the triadic Med (N, T, D) operating policies applied to a controllable M/G/1 queueing model, its upper and lower bounds are derived to approximate its corresponding actual values. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) or Max (N, T), Max (N, D) and Max (T, D) with the simple N, T and D operating policies without using any other types of triadic operating policies such as Min (N, T, D) and Max (N, T, D) policies. All three input variables N, T and D are equally contributed to construct such bounds for estimation of the expected busy period.
The most generalized form of the triadic operating policy for a controllable M/G/1 queueing model is analyzed to obtain fundamental relations among the other forms of operating policies based on its corresponding expected busy period. Since it consists of
Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented
Based on the known results of the expected busy periods for the triadic Min (N, T, D) and Max (N, T, D) operating policies applied to a controllable M/G/1 queueing model, a relation between them is constructed. Such relation is represented in terms of the
Us ing the known result of the expected bllsy period for the triadic Min (N, T, 0) operating po licy applied to a controllable M/GI1 queueing model, its upper and lower bounds are derived to approximate its corresponding ac tual value. 80th bounds are rep
The most generalized form of the triadic operation policy for an M/G/1 queueing model is developed It consists of three simple N, T and D operating policies and has a peculiar structure possessing concepts of dyadic policies Using the concept of the pseud
Using the results of the expected busy periods for the dyadic Min(N, D) and Max(N, D) operating policies in a controllable M/G/1 queueing model, an important relation between them is derived. The derived relation represents the complementary property betw
The expected busy period for the controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy is derived by using a new concept so called “the pseudo probability density function.” In order to justify the proposed approaches for the
The expected busy period for the controllable M/G/1 queueing model operating under the triadic policy is derived by using the pseudo probability density function which is totally different from the actual probability density function. In order to justif