In recent years, people are increasingly interested in CO2 hydrogenation to produce value-added chemicals and fuels ( CH4, CH3OH, etc.). In the quest for an efficient treatment in CO2 methanation and methanolization, several technologies have been practiced, and DBD plasma technology gain attention due to its easily handling, mild operating conditions, strong activation ability, and high product selectivity. In addition, its reaction mechanism and the effect of packing materials and reaction parameters are still controversial. To address these problems efficiently, a summary of the reaction mechanism is presented. A discussion on plasma-catalyzed CO2 hydrogenation including packing materials, reaction parameters, and optimizing methods is addressed. In this review, the overall status and recent findings in DBD plasma-catalyzed CO2 hydrogenation are presented, and the possible directions of future development are discussed.
Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by N2-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of N2-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ (23 mmol- CH3OH/(g-Cu·h)) was higher, on Cu loading basis, than that of CZA (9 mmol-CH3OH/ (g-Cu·h)). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.