The effects of cadmium ions (Cd2+) on the Chl a fluorescence of Ricciocarpos natans were investigated in order to determine whether Chl fluorescence can be used as a biomarker to estimate the physiological responses of plants to cadmium stress. In all plants treated with Cd2+, the image of Fv/Fm, which represents the maximum photochemical efficiency of PSⅡ, changed as the Cd2+ concentration increased, when treated for 48 h or more. Changes of ΦPSⅡ and QP images were recognized even at 10 μM Cd2+. The Chl a O-J-I-P fluorescence transient was also affected even at 10 μM Cd2+. The fluorescence yield decreased considerably in steps J, I and P in plants treated with Cd2+, although a typical polyphasic rise was observed in non-treated plants. The Chl fluorescence parameters, Fm, Fv/Fo, Sm, SFIabs, PIabs and ETo/CS, decreased as the Cd2+ concentration increased, while the Mo and Kn parameters increased. Peroxidase activity decreased significantly and catalase activity increased as the Cd2+ concentration increased. Because of its sensitivity to Cd2+ Ricciocarpos natans is useful in experiments investigating the responses of plants to cadmium exposure. Several parameters (Fm, Fv/Fo, Sm, SFIabs, PIabs, ETo/CS, Mo and Kn) can be applied to determine quantitatively the physiological states of plants under cadmium stress.
The effects of Cd2+ ions on the Chl a fluorescence of 5 hydrophytes (e.g. Lemna, Salvinia, Ricciocarp, Nymph, Typha plants) were investigated in order to select Cd2+-sensitive plant species and to get informations on physiological responses of plants to Cd2+ stress. Lemna plants were most sensitive to cadmium stress, while Nymph plants were tolerant. However, in all Cd2+-treated plants, Fv/Fm, the maximum photochemical efficiency of PSⅡ, decreased in proportion to the increase of Cd2+ concentration and treatment time. The Chl a fluorescence transient O-J-I-P was also considerably affected by Cd2+ ions; the fluorescence yield decreased considerably in steps J, I and P in Cd2+ treated plants, although it followed a typical polyphasic rise in non-treated plants. In Lemna plants, the functional parameters, ABS/CS, TRo/CS와 ETo/CS and RC/CS, decreased in proportion to the increase of Cd2+ concentration, while N, Mo and Kn increased. The structural parameters, Φpo, Φpo/(1-Φpo), Plabs, SFlabs, Kp and RC/ABS, also decreased according to the increase of Cd2+ concentration. Consequently, Lemna plants will be useful as a experimental model system to investigate responses of plants. And several functional or structural parameters could be applied to determine quantitatively the physiological states of plants under stresses.