본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.
This paper proposes a building recognition algorithm using watershed image segmentation algorithm and integrated region matching (IRM). To recognize a building, a preprocessing algorithm which is using Gaussian filter to remove noise and using canny edge extraction algorithm to extract edges is applied to input building image. First, images are segmented by watershed algorithm. Next, a region adjacency graph (RAG) based on the information of segmented regions is created. And then similar and small regions are merged. Second, a color distribution feature of each region is extracted. Finally, similar building images are obtained and ranked. The building recognition algorithm was evaluated by experiment. It is verified that the result from the proposed method is superior to color histogram matching based results.