Concrete structures of spent nuclear fuel interim storage facility should maintain their ability to shield and structural integrity during normal, off-normal and accident conditions. The concrete structures may deteriorate if the interim storage facility operates for more than several decades. Even if deterioration occurs, the concrete structures must maintain their own functions such as radiation shielding protection and structural integrity. Therefore, it is necessary to establish an analysis methodology that can evaluate whether the deteriorated concrete structure maintains its integrity under not only normal or off-normal condition but also accident condition. In accident conditions such as tip over and aircraft collision, both static material properties and dynamic properties are needed to evaluate the structural integrity of the concrete structures. Especially, it has been known to be difficult to estimate the resulted damage precisely where an aircraft collides with the degraded concrete structures at a high strain rate. In this study, damage evaluation of concrete overpack due to aircraft collisions was conducted. First, in order to verify the impact analysis methodology, the aircraft impact analysis of plane concrete overpack was performed and compared with the test results previously conducted by our research team. Then, the impact analysis for the overpack of KORAD21C was performed. In the future, the radiation shielding analysis will be performed under the conditions to evaluate whether or not the radiation shielding ability is maintained.
In Korea, the construction of dry storage facilities for spent nuclear fuel is being promoted through the 2nd basic plan for high-level radioactive waste management. When operating dry storage facilities, exposure dose assessment for workers should be performed, and for this, exposure scenarios based on work procedures should be derived prior. However, the dry storage method has not yet been sufficiently established in Korea, so the work procedure has not been established. Therefore, research is needed to apply it domestically based on the analysis of spent nuclear fuel management methods in major overseas leading countries. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. Among the various spent nuclear fuel management systems, the metal overpack-based HI-STAR 100 system and the concrete overpackbased HI-STORM 100 system are quite common methods in the United States. Therefore, in this study, work procedures were analyzed based on each final safety analysis report. First, the HI-STAR 100 overpack enters the facility and is placed in the transfer area. Remove the impact limiter of the overpack and install the alignment device on the top of the overpack. Place the HI-TRAC, an on-site transfer device, on top of the alignment unit and remove the lids of the two devices to insert the canister into the HI-TRAC. When the canister transfer is complete, reseat the lid to seal it, and disconnect the HI-TRAC from the HI-STAR 100. Raise the canister-loaded HI-TRAC over the alignment device on the top of the HI-STORM 100 overpack and remove the lids of the two devices that are in contact. Insert the canister into the HI-STORM 100 and reseat the lid. The HI-STORM 100 loaded with spent nuclear fuel is transferred to the designated storage area. In this study, the procedure for receiving and storing spent nuclear fuel in a concrete overpack-based storage facility was analyzed. The main procedure was the transfer of canisters between overpacks, and it was confirmed that HI-TRAC was used in the work procedure. The results of this study can be used as basic data for evaluating the exposure dose of operating workers for the construction of dry storage facilities in Korea.