This paper is mainly concerned with the interaction effects between two vessels and sidewall with a mound. Experimental study on hydrodynamic forces between ship and sidewall with a mound was already shown in the previous paper, measured by varying the distances between ship and sidewall. The ship maneuvering simulation was conducted to find out the minimum safe distance between vessels, which is needed to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. When and if one vessel passes the other vessel through the proximity of sidewall with a mound, the spacing between two vessels is needed for the velocity ratio of 1.2, compared to the case of 1.5. Also, for the case of ship-size estimation, the ship maneuvering motion is more affected by interaction effects for the overtaken small vessel, compared to the overtaking large vessel.
제한수역에서, 정지해 있는 선박 부근을 대형선박이 항행할 경우, 항행선박으로 인하여 정지중인 선박에 미치는 간섭력은 항로설계 및 선박조종운동의 관점에서 보았을 때 대단히 중요한 문제이다. 이 논문에서는 대형 컨테이너 선박이 정지해 있는 선박 부근을 항행할 때, 두 선박간의 횡방향 거리, 항행선박의 속력, 항행선박의 크기 및 수심과 항행선박간의 흘수비(h/d)를 변수로 하여, 항행선박으로 인하여 정지 중인 선박에 미치는 간섭 영향에 대해서 다루었다. 이 연구의 목적은 제한수역에서 항행하는 대형컨테이너 선박과 계류중인 선박간의 상호간 섭력을 수치적으로 계산하고, 계류선박에 미치는 간섭영향을 최소화할 수 있는 항행선박의 속력 및 선박간의 상호거리에 대한 검토를 행하여 항내에서의 안전조종운동에 필요한 기준을 제안하는데 있다.
The emphasis is put on the detailed knowledge on manoeuvring characteristic for the safe navigation while avoiding terrible collision between ships and on the guideline to the design and operation of the ship-waterway system The numerical simulation of manoeuvring motion was carried out parametrically for different ship types, ship-velocity ratios, separation and stagger between ships. As for the calculation parameters, the ratios of velocity difference (hereafter, U2/U1 ) between two ships were considered as 0.6, 1.2, 1.5. From the inspection of this investigation, it indicates the following result. Considering the interaction force only as parameter, the lateral distance between ships is necessarily required for the ship-velocity ratio of 1.2, compared to the cases of 0.6 and 1.5 regardless of the ship types. Furthermore, regardless of the ship-velocity ratio, an overtaking and overtaken vessel can be manoeuvred safely without deviating from the original course under the following conditions: the lateral distance between two vessels is approximately kept at 0.5 times of ship-length and 5 through 10. degrees of range in maximum rudder angle. The manoeuvring characteristic based on this investigation will be very useful for keeping the safety of navigation from the practical point of ships design and traffic control in restricted waterways.