질감, 모양, 색채 등 내용기반 영상검색(CBIR)의 기능을 이용하여 한국의 지리산 국립공원과 영국의 케이른고럼스 국립공원의 자연 경관에 있어서의 차이를 판별하는데 본 연구의 목적이 있다. 먼저 각 국립공원의 자연경관을 디지털 사진영상으로 촬영한 후, 전형적인 경관사진을 선별하였다. 사진영상의 저단계 기능(Low-level function)이 계량화되어 수직적으로 회전된 다섯 개의 요인으로 축약되었다. 이 중 유의한 차이를 보이지 않은 물 관련 요인이 제외된 나머지 네 개의 요인에 근거한 판별선이 케이른고럼스 경관과 지리산 경관 사이에서 도출되어, 판별함수가 두 그룹을 유의하게 분할하였다(2(4)=61.433; p〈0.001). 고유치 2.417과 월크스 람다 0.293에 의하여 전체 변이가 두 그룹의 판별함수 평균의 차이에서 대부분 산출되었음을 확인하였다. 또한, 네 개의 독립변수가 종속변수 전체 분산의 70.7%를 설명하는 것으로 추정되었다. 경관에 대하여 가장 큰 효과를 나타내는 변수는 원거리관련 변수(r=1.073)이며, 다음으로 근거리관련 변수(r=0.896)였으며, 전체적으로 90.7%가 타당하게 분류되었다. 이는 케이른고럼스 국립공원과 지리산 국립공원 자연경관 사이에서 사진영상의 근거리 요인뿐만 아니라, 원거리 요인이 보다 경관 차이에 유의한 판별력을 보이는 것으로 해석되므로, 국립공원의 경관정체성과 관련한 원거리 스카이라인의 시각적 중요성을 보여주는 것이라 하겠다.
본 논문에서는 color, texture, shape의 정보를 통합 이용하여 내용기반 영상검색 시스템의 성능을 향상시키는 기법을 고찰하였다. 먼저 영상에 내재되어 있는 color를 분석 추출하여 몇 개의 대표색으로 요약 표현한 다음, 이를 활용한 근사치 측정도를 고안하였다. Texture정보 분석에 있어서는 영상의 주축 행렬 데이터를 통계적 접근 방법으로 추출하였다. Edge분석의 방법으로는 Edge 막대그래프에서 색상변환, 양자화, 필터링에 관련된 정보를 선행처리 후 Edge 정보를 추출하였다. 마지막으로, 본 연구의 결과인 내용기반 영상검색 시스템의 효율성을 precision-recall 분석과 실험적 결과를 통하여 입증하였다.
This paper explores an image segmentation and representation method using Vector Quantization(VQ) on color and texture for content-based image retrieval system. The basic idea is a transformation from the raw pixel data to a small set of image regions whi