검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2017.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Dinickel-silicide (Ni2Si)/glass was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. Ni2Si was formed by rapid thermal annealing (RTA) at 700 oC for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, Ni2Si on quartz was also prepared through conventional electric furnace annealing (CEA) at 800 oC for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of Ni2Si. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano thick- Ni2Si phase. The catalytic activity of CEA-Ni2Si and RTA-Ni2Si with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with CEA-Ni2Si and RTA-Ni2Si catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick Ni2Si may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nanothick Ni2Si can be made available on a low-cost glass substrate via the RTA process.
        4,000원