Early studies claimed that heterotrophic dinoflagellates Pfiesteria piscicida and related genera may produce a putative water-soluble toxin that causes death of fish and other marine animals. Several methods were tested to visualize plate morphology of Cryptoperidiniopsis brodyi and Pfiesteria piscicida. Cellulose plates of cells were exposed and visualized by a membrane stripping method using Triton X-100. While calcofluor M2R white stain could readily bind to the thecal plates, details of the plate tabulation were difficult to observe. Fixation with osmium tetroxide (OsO4) produced well preserved cells with little morphological distortion, but thecal plates could not be visualized. Scanning electron microscopy (SEM) observation using the membrane stripping method showed distinctive plate tabulations between C. brodyi and P. piscicida suggesting that this method is a useful tool for morphological identification of lightly armored dinoflagellates.
Pfiesteria and Pfiesteria-like organisms were reported to be linked to major fish kills (involving well over a billion fish) in North Carolina and Maryland estuaries on the U.S. east coast during the 1990s. Occurrences of these species have been recently reported from Korean waters including Chinhae Bay and the coast of Yeosu. In this study, the life cycle of Cryptoperidiniopsis brodyi and Pfiesteria piscicida were examined using DAPI staining. Their excystment and growth were stimulated directly by the addition of prey cells such as Rhodiminas salina. Amoeboid stages in C. brodyi and P. piscicida were never observed in culture, even after addition of filter-sterile fish mucus and tissue. The dominant life cycle stages consisted of motile flagellated zoospores and cysts. A typical dinoflagellate life cycle was demonstrated by direct observation and DAPI staining.