Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor(SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35℃).
The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 days and its corresponding OLRs of 4.27 kgVS/m³-day. The optimum ranges of biogas and methane production rates were 1.47 volume of biogas per volume of reactor per day(v/v-d) and 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07-0.09 and 0.38-0.43, respectively, that were greatly stable in operation.
The Total Volatile Solids(TVS) removal efficiency based on the biogas production was 45.2% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160 mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor (SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35oC). The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 ~ 35 days and its corresponding OLRs of 3.5 ~ 4.3 kgVS/ m3-day. The optimum ranges of biogas and methane production rates were 1.36 ~ 1.47 volume of biogas per volume of reactor per day (v/v-d) and 1.0 ~ 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07 ~ 0.09 and 0.38 ~ 0.43, respectively, that were greatly stable in operation. The Total Volatile Solids (TVS) removal efficiency based on the biogas production was 39 ~ 45% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
Anaerobic mesophilic batch tests of dairy cow manure, dairy cow manure/saw dust mixture and dairy cow manure/ rice hull mixtures collected from bedded pack barn were carried out to evaluate their ultimate biodegradability and two distinctive decay rates (k1 and k2) with their corresponding degradable substrate fractions (S1 and S2). Each 3 liter batch reactor was operated for more than 100 days at substrate to inoculum ratio (S/I) of 1.0 as an initial total volatile solids (TVS) mass basis. Ultimate biodegradabilities of 37 ~ 46% for dairy cow manure, 32 ~ 40% for dairy manure/saw dust mixture and 31 ~ 38% for dairy cow manure/rice hull mixture were obtained respectively. The readily biodegradable fraction of 90% (S1) of dairy manure BVS (So) degraded with in the initial 29 days with arange of k1 of 0.074 day−1, where as the rest slowly biodegradable fraction (S2) of BVS degraded for more than 100 days with the long term batch reaction rate of 0.004 day−1. For the dairy manure/saw dust mixture and dairy manure/rice hull mixture, their readily biodegradable portions (S1) appeared 71% and 76%, which degrades with k1 of 0.053 day−1 and 0.047 day−1 for an initial 30 days and 38 days, respectively. Their corresponding long term batch reaction rates were 0.03 day−1.