본 연구에서는 홍수위 예경보를 위한 Data Mining기법에 대해 조사하고 예측시스템에 대해 연구하였다. 홍수예측의 모형 중 인공지능 기반의 신경망 모형을 이용하여 유사한 수문 사상을 유역내의 복잡한 물리적인 현상을 직접적으로 고려하지 않고 상·하류간 입력 자료를 사용하여 출력자료와의 관계로부터 학습을 통해 결론을 도출해내는 Data Mining기법 중 신경망 모형을 사용하였다.
본 연구에서는 중·소하천에서 홍수예경보를 위한 지능형 U-River 시스템의 실시간 모니터링 기술을 조사하고 예측 시스템에 대해 연구하였다. 기존의 홍수예경보의 문제점을 해결하기 위해 간단한 입력자료만으로 홍수예측이 가능한 인공지능 기반의 신경망 모형을 이용하였으며 예측 모형의 효율성과 적용성을 높이기 위해 유사한 수문 사상을 가지는 상·하류간 입력 자료를 동시에 사용하였다. 모델의 수행은 각 지점별 훈련성과를 토대로 최적의 은닉층 노드수를 선발하여 실시간 수위예측에 활용하였으며 수치적 기준을 적용하여 실측 수위와 모형에 의해 예측된 수위를 이용하여 평가하였다.