In wastewater treatment, an emulsion polymer automatic dissolving system is used to mix and dissolve the polymer used as a polymer coagulant with water before it is put into the dissolution tank. In this study, a disperser is developed to mix water and emulsion polymer better in the dissolving system. For this purpose, the flow analysis of the three disperser models was performed to select the disperser for the emulsion polymer automatic dissolving system with the best performance. The excellence of mixing was evaluated by grasping the flow uniformity and the vorticit in the disperser, and it was confirmed that the TYPE3 disperser was excellent.
We present the development of a spectral dispersion device for wideband spectroscopy for which the primary scientic objective is the characterization of transiting exoplanets. The principle of the disperser is simple: a grating is fabricated on the surface of a prism. The direction of the spectral dispersion power of the prism is crossed with the grating. Thus, the prism separates the spectrum into individual orders while the grating produces a spectrum for each order. In this work, ZnS was selected as the material for the cross disperser, which was designed to cover the wavelength region, ⋋ = 0.6-13 μm, with a spectral resolving power, R ≥ 50. A disperser was fabricated, and an evaluation of its surface was conducted. Two spectrometer designs, one adopting ZnS (⋋ = 0.6-13 μm, R ≥ 300) and the other adopting CdZnTe (⋋ = 1-23 μm, R ≥ 250), are presented. The spectrometers, each of which has no moving mechanical parts, consist simply of a disperser, a focusing mirror, and a detector.