Production management in the automobile parts industry is carried out according to the production plan of the customer, so it is important to prevent shortages in product supply. As the product composition became increasingly complex, the MES System was built for the purpose of efficient production plan management and inventory management, but its utilization is low. This study analyzed the problems of the MES system and sought to improve it. Through previous studies, it was confirmed that the inventory management of the pull approach that actually occurred in the warehouse is more suitable than the push approach based on the forecast of the warehouse for the volatility, complexity, and uncertainty of orders in the auto parts industry. To realize this, we tried distributed MRP by using the ADO function of VBA to link the standard information of the MES system with Excel and change the structure of the BOM table. Through this, it can help increase the accuracy of production planning and realize efficient inventory management, thereby increasing the utilization of the MES system in the auto parts industry and enhancing the competitiveness of the company.
Up to date cosmetic OEM/ODM (original equipment manufacturing/original development manufacturing) industry receives attention as a future growth engine due to steady growth. However, because of limited research and development capability, many companies have employed commercial management platforms specialized for large-sized companies; thus, overall system effectiveness and efficiency is low. Especially, MRP (material requirement planning) system introduced originally in 1970s is employed to calculate the requirement of the parts. However, dynamic nature of production lead time usually results in incorrect requirements. In addition, its algorithm does not consider the capability of the production resources. Also, because the commercial MRP system calculates all subcomponent for fixed period, the more goods have subcomponent, the slower calculation is. Therefore, conventional MRP system cannot respond complicated situation in time. In this study, we will suggest a new method that can respond to complicated situations resulting from short lead time and urgent production order in Korean cosmetic market. In particular, a distributed MRP system is proposed, that consists of multi-functional and operational modules, based on the characteristic of the BOM (bill of material). The distributed MRP system divides components (i.e. products and parts) into several fields and decrease the problem size; thus, we can respond to dynamically changed data any time. Through this solution, we can order components quickly, adjust schedules and planned quantity, and manage stocks reasonably. In addition, a prototype of the distributed MRP system is presented in this paper, in which ERP (enterprise resource planning) sever data is associated with an excel spreadsheet via MSsql. System user interface is implemented by a VBA (visual basic for applications) tool. According to a case study, response rate for delivery and planning achievement rate were enhanced about 20%, and inventory turnover was also decreased. Consequently, the proposed system improves overall profit.
The need for accurate yield prediction is increasing for estimating productivity and production costs to secure high revenues in the semiconductor industry. Corresponding to this end, we introduce new spatial modeling approaches for spatially clustered defects on an integrated circuit (IC) wafer map. We use spatial location of an IC chip on the wafer as a covariate on corresponding defects count listed in a wafer map. Analysis results indicate that yield prediction can be greatly improved by capturing spatial features of defects. Tyagi and Bayoumi's (1994) wafer map data are used to illustrate the procedure.