검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2020.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the effect of variation in the number of somaticcell- cloned embryos and their developmental stage at transfer on pregnancy, as well as the influence of the estrus status of recipient pigs on in vivo development of cloned porcine embryos after embryo transfer. For somatic cell nuclear transfer (SCNT), fibroblast cells were obtained from a male porcine fetus. Recipient oocytes were collected from prepubertal gilts at a local abattoir and then cultured. After SCNT, reconstructed embryos of different numbers and developmental stages were transferred into recipient pigs. The developmental stage of the cloned embryos and the number of transferred embryos per surrogate showed no significant differences in terms of the resulting cloning efficiency. However, the pregnancy rate improved gradually as the number of transferred cloned embryos was increased from 100- 150 or 151-200 to 201-300 per recipient. In pre-, peri-, and post-ovulation stages, pregnancy rates of 28.6%, 41.8%, and 67.6% and 16, 52, and 74 offspring were recorded, respectively. The number of cloned embryos and estrus status of the recipient pig at the time of transfer of the cloned embryo affect the efficiency of pig production; therefore, these variables should be particularly considered in order to increase the efficiency of somatic cell pig cloning.
        4,000원
        2.
        2011.10 구독 인증기관·개인회원 무료
        Somatic cell nuclear transfer (SCNT) and induced pluripotent stem cell (iPS) experiments have generally demonstrated that a differentiated cell directly converts into a undifferentiated or pluripotent state. In SCNT experiment, nuclear reprogramming is induced by exposure of introduced donor cell nuclei to the recipient cytoplasm of matured oocytes. Although nuclear reprogramming of cells by the ex-ovo methods is not always consistent or efficient, it has been suggested that a combination of nuclear reprogramming technique may improve the efficiency or frequency of normal development of SCNT embryos. Here we hypothesized that treatment of somatic cells with extracts prepared from GV stage sturgeon's oocytes prior to their use as nuclear donors for SCNT will improve subsequent development. We reported a reversible permeabilization protocol with digitonin to deliver sturgeon oocyte exteact (SOE) to porcine fetal fibroblast cell nuclei ex ovo. Porcine fibroblasts were permeabilized by 4 μg/ml of digitonin for 2 min at 4℃ and then incubated in SOE for 7h at 15 18℃ followed by resealing of cell membrane. As results, no difference was observed in the number of fused couplets or the number of fused couplets that cleaved between the extract treated or control group. However, there was a significantly decrease in the percentage of fused couplets that developed to the blastocyst stage in the SOE treated group (p<0.05). Histone acetylation status was determined using an antibody to acetylation at lysine 9 on histone 3 (H3K9Ac). The intensity of H3K9Ac staining in 1-cell stage NT embryos was significantly increased when treated with the SOE (p<0.05), similar to that in 1-cell stage IVF embryos. In addition, porcine NT embryos reconstructed by using donor cell exposed to SOE prior to cell fusion significantly decreased developmental competence to the blastocyst stage but increased pluripotent gene expressions (Sox2, Nanog and Oct3/4) when compared with those in normal NT embryos (p<0.05).
        3.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to develop a cloning technology of mouse embryos by nuclear transplantation with electrofusion and to produce cloned offsprings by transfer of reconstituted embryos. A single nucleus from two- and eight-cell embryos was transplanted into the enucleated two-cell embryos by rnicromanipulation. The fusion of nucleus with recipient cytoplasm and the subsequent development of reconstituted embryos in vitro as well as in vivo to term were examined to determine the optimal electrofusion parameters for nuclear transplantation in mouse embryos. The successful enucleation of donor embryos was 84.9 and 83.3% in two- and eight-cell stage, respectively, and the successful injection of nucleus from two- and eight-cell donor embryos into the perivitelline space of enucleated two-cell embryos were 85.1 and 84.7%, respectively. No significant differences were found in enucleation or injection rate between the cell stages of donor embryos. When the blastomeres of intact two-cell mouse embryos were electrofused in 0.3 M mannitol medium(100 sec., 3 pulses), the fusion rate was similarly 93.2, 92.2 and 92.0% in 1.0, 1.5 and 2.0 kV /crn, respectively, but in vitro development to blastocyst of the fused two-cell embryos was significantly(P<0.05) lower in 2.0 kV/cm (63.4%) than in 1.0 kV/cm (91.7%) or 1.5 kV/cm (82.4%). The development in vitro to eight-cell stage of the reconstituted embryos with nucleus from two-cell stage(45.5%) was significantly(P<0.05) higher than that from eight-cell stage blastomeres (16.7%). The number of blastomeres of the intact embryos at blastocyst stage was 50i0.6 and 552.4 in in vitro and in vivo cultured mouse embryos, respectively, but significantly(P<0.05) decreased to 350.7 in nuclear transplanted blastocyst embryos. The conception rate of mice following embryo transfer was 32.1% in the reconstituted two-cell embryos using two-cell donor nuclei, which was comparable to the fresh two-cell embryos(40.6%). However, the rate of development in vivo to term following embryo transfer of the reconstituted two-cell embryos using two-cell donor nuclei (23.5%) was significantly(P<0.05) lower compared with the percentage of two-cell fresh embryos(31.5%).
        4,000원
        4.
        1994.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study evaluated the influence of cell stage of donor nucleus on nuclear injection, electrofusion and in vitro development in the rabbit to improve the efficiency of nuclear transplantation in the rabbit. The embryos of 8-, 16- and 32-cell stage were collected from the mated does by flushing viducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FGS) at 44, 54 and 60 hours after hCG injection. The blastorneres separated from these embryos were used as donor nucleus. The ovulated oocytes collected at 14 hours after hCG injection were used as recipient cytoplasm following removing the nucleus and the first polar body. The separated blastomeres were injected into the enucleated oocytes by micromanipulation and were electrofused in 0.28 M mannitol solution at 1.5 kV /cm, 60 sec for three times. The fused oocytes were cocultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FGS for 72~120 hours at 39 in a 5% incubator. The cultured nuclear transplant embryos were stained with Hoechst 33342 solution and the number of cells were counted by fluorescence microscopy. The successful injection rate of 8-, 16- and 32-cell-stageblastomeres into enucleated oocytes was 86.7, 91.0 and 93.9%, respectively. The electrofusion rate of 8-, 16- and 32-cell-stage blastomeres with enucleated oocytes was 93.3,89.3 and 79.0%, respectively. Development of blastomeres to blastocyst was similar with 8-,16- and 32-cell-stage donor nuclei(26.2, 25.8 and 26.6%, respectively, P<0.05). The mean number of cell cycle per day during in vitro culture in nuclear transplant embryos which received 8-, 16- and 32-cell- stage nuclei was 1.87, 1.81 and 1.43, respectively.
        4,000원