검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2023.05 구독 인증기관·개인회원 무료
        The Korean Nuclear Safety and Security Commission has established a general guideline for the disposal of high-level waste, which requires that radiological effects from a disposal facility should not exceed the regulatory safety indicator, a radiological risk. The post-closure safety assessment of the disposal facility aims to evaluate the radiological dose against a representative person, taking into account nuclide transport and exposure pathways and their corresponding probabilities. The biosphere is a critical component of radiation protection in a disposal system, and the biosphere model is concerned with nuclide transport through the surface medium and the doses to human beings due to the contaminated surface environment. In past studies by the Korea Atomic Energy Research Institute (KAERI), the biosphere model was constructed using a representative illustration of surface topographies and groundwater conditions, assuming that the representative surface environment would not change in the future. Each topography was conceptualized as a single compartment, and distributed surface contamination over the geometrical domain was abstracted into 0D. As a result, the existing biosphere model had limitations, such as a lack of quantitative descriptions of various transport and exposure pathways, and an inability to consider the evolution of the surface environment over time. These limitations hinder the accurate evaluation of radiological dose in the safety assessment. To overcome these limitations, recent developments in biosphere modeling have incorporated the nuclide transport process over a 2D or 3D domain, integrating the time-dependent evolution of the surface environment. In this study, we reviewed the methodology for biosphere modeling to assess the radiological dose given by distributed surface contamination over a 2D domain. Based on this review, we discussed the model requirements for a numerical module for biosphere dose assessment that will be implemented in the APro platform, a performance assessment tool being developed by the KAERI. Finally, we proposed a conceptual model for the numerical module of dose assessment.