본 논문에서는 시퀀스 상에서 확장 칼만필터(Extended Kalman Filter) 기반의 SLAM(Simultaneous Localization And Mapping) 시스템의 안정적인 카메라 추적과 재위치(re-localization) 방법이 제안된다. SLAM으로 얻어진 3차원 특징점에 들로네(Delaunay) 삼각화를 적용하여 기준(reference) 평면을 설정하며, 평면상에 존재하는 특징점의 BRISK(Binary Robust Invariant Scalable Keypoints) 기술자(descriptor)를 생성한다. 기존 확장 칼만필터의 오차가 누적되는 경우를 판단하여 기준 평면의 호모그래피로부터 카메라 정보를 해석한다. 또한 카메라가 급격하게 이동해서 특징점 추적이 실패하면, 저장된 강건한 기술자 정보를 매칭하여 카메라의 위치를 다시 추정한다.
This paper suggests a new observation model for Extended Kalman Filter based Simultaneous Localization and Mapping (EKF-SLAM). Since the EKF framework linearizes non-linear functions around the current estimate, the conventional line model has large linearization errors when a mobile robot locates faraway from its initial position. On the other hand, the model that we propose yields less linearization error with respect to the landmark position and thus suitable in a large-scale environment. To achieve it, we build up a three-dimensional space by adding a virtual axis to the robot’s two-dimensional coordinate system and extract a plane by using a detected line on the two-dimensional space and the virtual axis. Since Jacobian matrix with respect to the landmark position has small value, we can estimate the position of landmarks better than the conventional line model. The simulation results verify that the new model yields less linearization errors than the conventional line model.