검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Garlic mustard (Alliaria petiolata) is a species that has devastated the United States and Canada. It is known to play a role in destroying the ecosystem. In this study, the domestic distribution of garlic mustard was confirmed and a detailed distribution map was created for the Samcheok region, where the largest population has been established in South Korea. This study investigated the growth environment, life cycle, and population dynamics of the species in the Samcheok region. Garlic mustard was found in a total of 301 locations in Samcheok, with a total distribution area of 2,957 square meters. Annual plants germinated in mid-April, overwintered in rosette form, underwent vegetative growth from April 10 to April 24 the following year, and flowered from April 24 to May 7. Individuals producing seeds began to die off from June. Both annual and biennial individuals showed a trend of increasing and then decreasing in number around April 27 (118 days). Garlic mustard grew well under favorable light conditions in early spring. They showed less growth on leaf litter, short distance from roads, lower altitude, deciduous broad-leaved forest of middle and lower parts of the slope and forest edge. Without proper control measures in the Samcheok region, it is likely to spread more rapidly in deciduous broad-leaved forests along hiking trails in the Galyasan Mountains. In particular, it is more likely to extend to oak community where light enters the site during flowering than to pine community where there is less light in the site.
        5,200원
        2.
        2021.02 KCI 등재 서비스 종료(열람 제한)
        Ecological disturbance plants distributed throughout the country are causing a lot of damage to us directly or indirectly in terms of ecology, economy and health. These plants are not easy to manage and remove because they have a strong fertility, and it is very difficult to express them quantitatively. In this study, drone hyperspectral sensor data and Field spectroradiometer were acquired around the experimental area. In order to secure the quality accuracy of the drone hyperspectral image, GPS survey was performed, and a location accuracy of about 17cm was secured. Spectroscopic libraries were constructed for 7 kinds of plants in the experimental area using a Field spectroradiometer, and drone hyperspectral sensors were acquired in August and October, respectively. Spectral data for each plant were calculated from the acquired hyperspectral data, and spectral angles of 0.08 to 0.36 were derived. In most cases, good values of less than 0.5 were obtained, and Ambrosia trifida and Lactuca scariola, which are common in the experimental area, were extracted. As a result, it was found that about 29.6% of Ambrosia trifida and 31.5% of Lactuca scariola spread in October than in August. In the future, it is expected that better results can be obtained for the detection of ecosystem distribution plants if standardized indicators are calculated by constructing a precise spectral angle standard library based on more data.