검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, classification of spall and crack faults of gear teeth is studied by applying the ensemble empirical mode decomposition(EEMD) for the gear transmission error(TE). Finite element models of the gears with the two faults are built, and TE is obtained by simulation of the gears under loaded contact. EEMD is applied to the residuals of the TE which are the difference between the normal and faulty signal. From the result, the difference of spall and crack faults are clearly identified by the intrinsic mode functions(IMF). A simple test bed is installed to illustrate the approach, which consists of motor, brake and a pair of spur gears. Two gears are employed to obtain the TE for the normal, spalled, and cracked gears, and the type of the faults are separated by the same EEMD application process. In order to quantify the results, crest factors are applied to each IMF. Characteristics of spall and crack are well represented by the crest factors of the first and the third IMF, which are used as the feature signals. The classification is carried out using the Bayes decision theory using the feature signals acquired through the experiments.
        4,000원
        2.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We develop methods for propagating and analyzing EPCI(Extended Process Capability Index) by using the error type that classifies into accuracy and precision. EPCI developed in this study can be applied to the three combined processes that consist of production, measurement and calibration. Little calibration work discusses while a great deal has been studied about SPC(Statistical Process Contol) and MSA(Measurement System Analysis). EPCI can be decomposed into three indexes such as PPCI(Production Process Capability Index), PPPI(Production Process Performance Index), MPCI(Measurement PCD, and CPCI(Calibration PCI). These indexs based on the type of error classification can be used with various statistical techniques and principles such as SPC control charts, ANOVA(Analysis of Variance), MSA Gage R&R, Additivity-of-Variance, and RSSM(Root Sum of Square Method). As the method proposed is simple, any engineer in charge of SPC. MSA and calibration can use efficientily in industries. Numerical examples are presentsed. We recommed that the indexes can be used in conjunction with evaluation criteria.
        4,000원