검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Using computational fluid dynamics (CFD), this study simulated the air supply and exhaust conditions inside KTXSancheon train cabin to analyze the airflow, velocity, temperature, and residence time distributions. Based on the analyzed airflow in the cabin, the trajectory properties of droplets with various diameters exhaled from a passenger in a specific seat were analyzed. In the train cabin, forced airflow was formed by the operation of an air conditioning unit, while air stagnation occurred through spinning vortices at the front and rear where there were no floor outlets. Droplet particles ≤36 μm in diameter were dispersed throughout the cabin following the airflow generated by the air conditioning unit. The degree of dispersion differed according to the passenger seat location. In addition, the expelled droplets were mostly deposited on the surfaces of passenger bodies, seats, and floor. The ratio of deposited droplets to suspended droplets was increased with increasing droplet size. Further, the CFD study allowed the prediction of the possibility of exposure to exhaled droplets by estimating the dispersion and deposition properties of droplets released from a passenger in a specific seat. This study can be utilized to adjust the operation of air conditioning units and encourage the installation of air-purifying units to minimize secondary infections.
        4,000원