In order to provide the basis for developing practical mouse embryonic stem cells (mESCs) culture method, how the endogenous level of self-renewal-stimulating factor genes was altered in the mESCs by different extracellular signaling was investigated in this study. For different extracellular signaling, mESCs were cultured in 2 dimension (D), 3D and integrin-stimulating 3D culture system in the presence or absence of leukemia inhibitory factor (LIF) and transcriptional level of Lif, Bmp4 and Wnt3a was evaluated in the mESCs cultured in each system. The expression of three genes was significantly increased in 3D system relative to 2D system under LIF-containing condition, while only Wnt3a expression was increased by 3D culture under LIF-free condition. Stimulation of integrin signaling in mESCs within 3D system with exogenous LIF significantly up-regulated transcriptional level of Bmp4, but did not induce transcriptional regulation of Lif and Wnt3a. In the absence of LIF inside 3D system, the expression of Lif and Bmp4 was significantly increased by integrin signaling, while it significantly decreased Wnt3a expression. Finally, the signal from exogenous LIF significantly caused increased expression of Lif in 2D system, decreased expression of Bmp4 in both 2D and 3D system, and decreased expression of Wnt3a in integrin-stimulating 3D system. From these results, we identified that endogenous expression level of self-renewal-stimulating factor genes in mESCs could be effectively regulated through artificial and proper manipulation of extracellular signaling. Moreover, synthetic 3D niche stimulating endogenous secretion of self-renewal-stimulating factors will be able to help develop growth factor-free maintenance system of mESCs.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear factor-kB(NF-kB) determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce NF-kB and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.