검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 심층 학습 기반의 표정 재연 기술에 대한 많은 연구가 진행되고 있다. 표정 재연 기술이란 입력 이미지 속 사람의 표정을 원하는 표정으로 재연하는 기술이다. 표정 재연 기술은 게임 산업 분야에 유용하게 활용될 수 있을 것이나 표정 재연 기술을 게임 캐릭터에 적용하는 것은 쉽지 않다. 게임 캐릭터의 AU(Action Unit)를 추출하는 것이 힘든 일이기 때문이다. 따라서 본 논문에서는 색상 모듈을 사용하여 게임 캐릭터에도 적용할 수 있는 심층 표정 재연 기술을 제안한다. 게임 캐릭터에서 AU 추출이 가능하도록 색상 모듈을 이용, 캐릭터의 얼굴 색을 실제 사람 얼굴의 색으로 조정한다. 본 논문의 모델은 GAN 기반 구조이다. 본 논문이 제시한 프레임 워크는 색상 모듈, 두가지 생성자, 두가지 판별자, Identity 보존 모듈로 이루어진다. 입력 이미지를 색상 모듈을 통해 얼굴 색을 조정한 후 입력 AU에 따라 생성자를 통해 중립 이미지를 생성한 후 재연 이미지를 생성한다. 그 후 색상 모듈을 통해 입력 이미지 캐릭터의 피부색으로 다시 조정하여 결과 이미지를 생성한다. 이미지가 생성될 때마다 판별자를 통해 이미지의 품질을 측정하고 Identity 보존 모듈을 통해 Identity를 예측하여 보존한 다. 본 연구의 결과는 게임 캐릭터에 대해 기존 연구들보다 표정 변화가 잘 일어난 이미지를 생성했고 이를 게임 분야에 활용할 수 있을 것이다.
        4,000원