The trochanteric prominence angle test (TPAT) has been used to measure the femoral anteversion angle between the tibial crest and the vertical line. However, the exact anatomical reference of the tibial crest has not yet been identified in the literature. Thus, the purposes of this research were twofold: first, to compare the femoral anteversion angle measured at three different anatomical references of the tibial crest (the proximal tibial crest, the proximal third of tibial crest, and the proximal half of tibial crest) and, second, to determine inter-and intra-rater reliabilities of the femoral anteversion angle measured at these three different anatomical references of the tibial crest during the TPAT. We recruited 14 healthy subjects, and a total of 28 legs were examined. The TPAT was measured using a digital inclinometer. A 1-way repeated-measure analysis of variance was used to compare the femoral anteversion angle measured at three different anatomical references of the tibial crest, and intraclass correlation coefficients (ICCs) were calculated to determine reliability. The femoral anteversion angle measured at the proximal tibial crest was significantly higher than that at the proximal third of the tibial crest and the proximal half of the tibial crest. The inter-and intra-rater reliabilities of femoral anteversion angle were measured at three anatomic references of the tibial crest were all found to be high during the TPAT (ICC=.9 0~.98). In conclusion, clinicians should recognize that the different degrees of the femoral anteversion angle could be measured when different anatomical references of the tibial crest were used, and that reliabilities were high when an exact anatomical reference of the tibial crest was used during the TPAT.
The purpose of this research was to analyze the effects of the increase of the femoral anteversion angle on the unbalanced quadriceps femoris muscle causing the increase of the valgus force on the knee joints and patellofemoral pain syndrome by comparing with the group that shows the smaller femoral anteversion angle. The method for the research was to compare the femoral muscle's activity while the subjects were maintaining the knee joint flexed isometrically for 10 seconds. The evaluation tool for femoral muscle's activity was QEMG-4 (model LXM 3204). The results were as followings. Firstly, in case of the experimental group, the muscle strength of the vastus lateralis muscle was strong while the rectus femoris and vastus medialis were weak. In these facts, we can see the statistically meaningful difference in vastus medialis muscle activity. Secondly, in the muscle activity analysis for vastus lateralis and medialis of the two groups, we could see the vastus lateralis muscle was strong in anteversion wider for experimental group while the vastus medialis muscle contracted far more stronger in anteversion smaller for control group. From these results, we can see the significant differences in muscle recruitment between the two groups. Above results show that if the anteversion becomes wider, vastus medialis muscle will become seriously weaker, on the other hand, vastus lateralis act stronger.
The purpose of this study was to compare the differences of hip and thigh muscle activities between subjects with increased and decreased femoral anteversion during stair ascent. Twelve healthy female volunteers participated in this study. The subjects were divided into two groups (group 1 with increased anteversion of the hip, group 2 with decreased anteversion of the hip). This study analyzed differences in each mean peak gluteus maximus (GM), gluteus medius (GD) and tensor fascia lata (TLF) EMG amplitude: composite mean peak hip muscles (GM, GD, TFL) EMG amplitude ratios and in each mean peak vastus medialis oblique (VMO), vastus lateralis (VL), biceps femoris (HM) and semitendinosus (HL) EMG amplitude: composite thigh muscles (VMO, VL, HM, HL) EMG amplitude ratios among subjects with decreased or increased relative femoral anteversion. EMG ratios were compared in the stance and swing phase of stair ascent. Group 1 showed an increased standardized mean GM and GD EMG amplitude and decreased standardized mean TFL to composite mean hip muscles EMG amplitude ratios in stair ascent during both stance and swing phase. Also, group 1 showed an increased standardized mean HL EMG amplitude and decreased standardized mean VL and HM to composite mean thigh muscles EMG amplitude ratios in stair ascent during both stance and swing phases. There was no statistically significant difference in vastus medialis oblique between subjects with increased or decreased relative femoral anteversion. In order to provide rehabilitation professionals with a clearer picture of the specific requirements of the stair climbing task, further research must be expanded to include a wider range of age groups that represent the general public, such as including middle-aged healthy persons.