Many countries of the world has been devoting a lot of effort to reduce carbon emission. In order to reduce carbon emission, the high efficiency engine has been studied in the automotive industry. Of these, the spread and research of the diesel engine in Europe center are active. However the combustion characteristic of diesel engines have disadvantages of much NOx and soot emissions. In this study, the optimum regeneration point of the forced regeneration type DPF(Diesel Particulate Filter) that was equipped in medium-duty diesel vehicles using a mechanical fuel injection system have studied. DPF that is applied to the medium-duty diesel vehicle has a bent inlet pipe. The flow distribution characteristics of DPF according to the influence of the bent pipe have investigated. The flow distribution characteristics of DPF according to variation of the engine operating condition is considered to be useful data In order to decide the optimum regeneration point.
The PP-g-Vim-CH3I adsorbent, which possesses antibacterial and ion-exchange functions, was synthesized by photoinduced grafting of 1-vinyl imidazole (Vim) onto polypropylene, non-woven fabric and subsequent quaternization using methyl iodide (CH3I). The adsorption properties of PP-g-Vim-CH3I for nitrate ion were studied in batch mode and fixed-bed columns. The adsorption equilibria of NO3-N on PP-g-Vim-CH3I were well described by the Langmuir isotherm model, and the adsorption energy was 9.03 kJ/mol, which indicates an ion-exchange process. Adsorption-kinetic data were fitted with a pseudo-second-order kinetic model. The Bohart-Adams model was found to be suitable for simulating the breakthrough curves obtained from the fixed-bed columns. The fixed-bed sorption capacity of nitrate ion from the model was in the range 100.8 ~ 108.6 mg/g without the presence of competing anions but decreased to the range 55.7 ~ 96.2 mg/ g in groundwater due to adsorption competition with the coexisting anions, especially SO4 2− ion. The PP-g-Vim-CH3I adsorbent could be regenerated by washing with 1.0 N NaCl without serious lowering the adsorption capacity.
In recent years, the demand for advanced treatments in the water-treatment industry has increased, and physicochemicalseparation technologies have come into wide use. However, biofouling is a major problem for the separation processes in water and wastewater treatment. One anti-biofouling strategy is to construct antibacterial surfaces. In this work, polypropylene (PP) fiber was endowed with antibacterial/adsorption property by photoinduced graft polymerization of 1- vinyl imidazole (Vim) followed by quaternization with alkyl iodides. A concentration of Vim equal to 5 vol.% in 10-20 vol.% methanol, a photoirradiation time of 5 h and a reaction temperature of 80oC proved to be optimal for the grafting of Vim onto PP. The modified PP fibers were characterized by means of FT-IR, SEM, antibacterial and adsorption tests. We found that the quaternized PP-g-Vim fiber with methyl iodide exhibited high adsorption capacity for NO3-N and excellent antibacterial activities against both E. coli and S. aureus.