Recently, a study on reducing the weight of the robot arm, which enables a high-speed operation and enables reducing the energy consumption has been actively carried out. A lightweight robot arm is hard to control because it behaves like a flexible body rather than a rigid body. This paper proposes a controller which combines a PID controller and a fuzzy logic controller for control the position and vibration of the flexible robot arm. In order to show the effectiveness of the proposed controller, MSC.ADAMS computational model which incorporates the finite element flexible robot arm model is developed, and is used for performing simulations. Simulations are carried out with two reference inputs, and three end masses. Simulation results show that the proposed controller controls the position and vibration of the flexible robot arm adaptively without being affected by the reference input and the end mass.
This work presents a design and control method for a flexible robot arm operated by a wire drive that follows human gestures. When moving the robot arm to a desired position, the necessary wire moving length is calculated and the motors are rotated accordingly to the length. A robotic arm is composed of a total of two module-formed mechanism similar to real human motion. Two wires are used as a closed loop in one module, and universal joints are attached to each disk to create up, down, left, and right movements. In order to control the motor, the anti-windup PID was applied to limit the sudden change usually caused by accumulated error in the integral control term. In addition, master/ slave communication protocol and operation program for linking 6 motors to MYO sensor and IMU sensor output were developed at the same time. This makes it possible to receive the image information of the camera attached to the robot arm and simultaneously send the control command to the robot at high speed.