Recently the market of the food waste disposer has increased. Therefore, many companies in the development of food garbage disposer has been increasing interest. In this study, we used QFD (Quality Function Development) to find out the quality factors for the development of the food waste disposer reflecting the consumer needs. HOQ (House Of Quality) showing the correlation between consumer characteristic and engineering characteristic was written by investigating the consumer needs based on the consumer complaints and survey. In addition, we generated the CTQ (Critical To Quality) reflecting the weighting of the importance of the parts. As the research result, the important quality factors for the food garbage disposer were the grinding capability, drying, and odor emission features. The crushing motor associated with grinding and dehydration appeared as the most important quality factors among the parts. Second thing was the fan motor associated with odor. The findings will be able to contribute to the development of the food waste disposer reflecting the consumer needs.
음식물류폐기물은 배출, 수거 및 처리단계에서 여러 문제점을 내포하고 있다. 배출 및 수거 단계에서는 보관용기 주변에서 발생되는 악취 및 해충 등 위생상의 문제점, 처리 단계에서는 음식폐기물 재활용 산물의 낮은 품질로 인한 유통상의 문제점 등을 들 수 있다. 또한 서울연구원에서 실시한 설문조사에 따르면, 가정 생활폐기물을 배출하는 데 있어서 가장 어려움을 느끼는 것이 음식폐기물의 배출(50.7%)이라고 응답하였고 주방용오물분쇄기(이하 디스포저) 사용이 허용된다면 사용할 의사가 있다는 응답이 매우 높았다(82.8%). 이에 따라 서울시에서는 디스포저 도입의 타당성을 평가하기 위하여 2009년과 2010년 및 2015년에 배수전처리, 정화조병합, 고액분리 등 총 3가지의 전처리시스템에 대한 시범사업을 실시하였다. 모니터링 항목에는 음식폐기물발생원단위, 디스포저 오수 발생량 및 오염부하량, 디스포저 사용 전후 오수의 성상 변화, 및 주민설문조사 등이 포함되었다. 시범사업의 모니터링 결과, 음식물류폐기물 발생원단위는 0.12~0.15kg/cap・dayfh 측정되었는데, 이는 환경부 통계 자료의 30~50% 수준이었다. 주방오수발생량원단위는 29.9L/cap・day, 분쇄오수발생량원단위는 4.1L/cap・day로 측정되었으며, 이는 일본의 국토교통성에서 제시한 자료(30L/cap・day, 5L/cap・day)와 거의 일치하였다. 디스포저 사용 후 배수전처리시설과 정화조병합처리시설 및 고형물회수시설 후단에서 측정된 각각의 BOD는 20.9, 67.8 및 129.0mg/L, SS는 63.7, 47.5 및 63.0mg/L, n-Hexane 추출물질은 18.8, 27.5 및 54.0mg/L를 나타내었다. 시범사업을 통해 전처리시설을 설치하고 디스포저를 사용하는 경우에 공공하수도에 미치는 영향이 매우 적은 것으로 확인되었고, 사용 주민을 대상으로 한 설문조사에서도 현재 법으로 금지되어 있는 디스포저 사용이 허용될 경우 90% 이상의 주민이 사용할 의향이 있다고 조사되었다.
The disposal of food waste has raised environmental concerns. The use of food waste disposers can be a convenient measure to manage household organic wastes. This device can be introduced to resolve the inconvenience of separating food wastes and implement the policy for converting food wastes into resources. However, the use of disposer has been prohibited in Korea unless the total solid recovery rate is greater than 80% (by dry wt.). Therefore, it is important to separate solid portions from disposer wastewater as much as possible to meet the standard. The objective of this study is to examine the control factors such as sieve size of screen, coagulation, RPM of centrifuge on solid-liquid separation. The result revealed that the use of sieve less than or equal to 0.3 mm could meet the total solid recovery rate of 80% (by dry wt.). Also, the coagulation filtrate recirculation using a coagulant, PAC, improved the solid recovery rate of 11.0% (by dry wt.) in using the sieve of 0.6 mm. This led to the total solid recovery rate of 79.3% (by dry wt.). Although RPM variation of centrifuge hardly influences the total solid recovery rate, when the separated solid residue is processed to compost or feedstock it is good because of low moisture content.
A food waste disposer is an electrically powered device installed under a kitchen sink. It is located between the sink’s drain and the trap which shreds food waste into tiny pieces so that they can go through plumbing. Use of this unit is convenient and hygienic for discharging food waste in kitchen. Nevertheless, this unit has been illegal until now in Korea because of both conflict with the government’s policy-resource recovery from food waste-and perceived threat to the city’s sewer system. An attempt was made recently to meet growing need to introduce this unit for advantage of using disposer and maintenance of sewer system, etc. So an attempt was made to introduce the food waste disposer system of ‘treatment type before discharging to sewer’, but it was inappropriate for conditions in Korean. In this study, we developed a suitable disposer system for Korea based on an innovative solid recovery technology. And continuous operating experiments were carried out to evaluate the performance of the system for 18 days. The amount of food waste fed into the system was equivalent to the daily amount of food waste made from 30 households living in apartment units, which was calculated to be 14.44 kg/day. After grinding, SS/TS of food waste was 60 percent and it was the maximum amount of solid that could be recovered using this system. In the system of solid collection type using screw press, more than 70 percent of suspended solids were recovered. And less than 20 percent of total soilds were discharged through wastewater and it satisfied the legal standard of Korea. This novel food waste disposer system will satisfy with both the government’s environmental policy and higher quality resource recovery from food waste in the facilities.