검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The foot is a complex body structure that plays an important role in static and dynamic situations. Previous studies have reported that altered foot posture might affect knee joint strength and postural stability, however their relationship still remains unclear. Objects: The purpose of this study was to identify whether pronated foot posture has an influence on knee isokinetic strength and static and dynamic postural stability. Methods: Forty healthy young males aged 18 to 26 years were included. Foot posture was evaluated using the Foot Posture Index-6 (FPI-6), and the subjects were divided into two groups according to their FPI-6 scores: a neutral foot group (n = 20, FPI-6 score 0 to +5) and a pronated foot group (n = 20, FPI-6 score +6 or more). Biodex Systems 3 isokinetic dynamometer was used to evaluate knee isokinetic strength and hamstring to quadriceps ratio at three angular velocities: 60°/sec, 90°/sec, and 180°/sec. The static and dynamic postural stability in a single-leg stance under the eyes-open and eyes-closed conditions were measured with a Biodex Balance System. Results: There were no significant differences between the groups in knee isokinetic strength and static postural stability (p > 0.05), but there was a significant difference in the medial– lateral stability index (MLSI) for dynamic postural stability under the eyes-closed condition (p = 0.022). The FPI-6 scores correlated significantly only with the dynamic overall stability index (OSI) and the MLSI (OSI: R = 0.344, p = 0.030; MLSI: R = 0.409, p = 0.009) under the eyesclosed condition. Conclusion: Participants with pronated foot had poorer medial–lateral dynamic stability under an eyes-closed condition than those without, and FPI-6 scores were moderately positively correlated with dynamic OSI and dynamic MLSI under the eyes-closed condition. These results suggest that pronated foot posture could induce a change in postural stability, but not in knee isokinetic strength.
        4,000원
        2.
        2012.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is important to assess foot posture when investigating the relationship between lower extremity dysfunctions and foot types. Although several measurements of static foot posture have been used, there is no consensus regarding clinical measurements for foot posture. The aim of this study is to explore the differences among navicular drift (NDt), foot posture index (FPI), arch index (AI), dorsal arch height ratio (DAHR), normal navicular height truncated (NNHt) and to discover the most effective measurement. After foot types were classified by navicular drop test (NDp), clinical measurements of NDt, FPI, AI, DAHR, and NNHt were performed on 64 subjects' feet. ANOVA analysis was used for the variance of the difference between the NDp and the five kinds of clinical measurements, and the level of significance was set at =.05. The results showed that all five clinical measurements demonstrated significant differences with navicular drop. In post-hoc, FPI and NNHt showed significant differences in all foot types. The five clinical measurements are suitable the classification of foot types through the NDp. Therefore, it could be possible to assess correct and objective foot posture by using FPI and NNHt.
        4,000원