This study presents the data analysis results of groundwater chemistry and the occurrence of fluoride in groundwater obtained from the groundwater quality monitoring network of Korea. The groundwater data were collected from the National Groundwater Information Center and censored for erratic values and charge balance (±10%). From the geochemical graphs and various ionic ratios, it was observed that the Ca-HCO3 type was predominant in Korean groundwater. In addition, water-rock interaction was identified as a key chemical process controlling groundwater chemistry, while precipitation and evaporation were found to be less important. According to a non-parametric trend test, at p=0.05, the concentration of fluoride in groundwater did not increase significantly and only 4.3% of the total groundwater exceeded the Korean drinking water standard of 1.5 mg/L. However, student t-tests revealed that the fluoride concentrations were closely associated with the lithologies of tuff, granite porphyry, and metamorphic rocks showing distinctively high levels. This study enhances our understanding of groundwater chemical composition and major controlling factors of fluoride occurrence and distribution in Korean groundwater.