실생활에서 사용되는 결제 시스템에는 전자 사인 , QR 코드, 바코드들이 사용된다. VR 환경 내에서 구현되어 있는 결제 시스템은 점점 연구가 시작되고 있다. 본 논문은 기존의 결제 시스템을 VR 환경에서 구현하기 위해 손 제스쳐 인식을 이용한 VR 전자사인 시스템을 제안한다. VR 시스템에 서는 키보드를 두드리거나 마우스를 건드릴 수 없는 상황이다. VR 컨트롤러를 가지고 결제 시스템 을 구성하기 위한 방법에는 여러 가지가 있을 수 있다. 손 제스처 인식을 이용한 전자사인이 그 중 하나인데, 손 제스쳐 인식에는 크게 Warping Methods, Statistical Methods, Template Matching 방법 으로 분류할 수 있다. 본 논문에서는 Template Matching 방법에 속한 $p 알고리즘을 이용하여, VR 에서 결제 시스템을 구성하였다. 그리고, VR 환경을 조성하기 위해서 Unity3D와 Vive 장비를 이용 해서 실제 결제가 이루어지는 paypal 시스템을 구현하였다.
We present a Microsoft Kinect-based hand recognition algorithm for an interactive image clipping system, which is widely used for environments such as public facilities and security environments where personal capturing devices including mobile phones are not allowed. User-friendly interface and accurate image capturing function are required for an image clipping system. We build the system by combining Microsoft Kinect, HD webcam and projector. The Kinect and webcam are used to capture the motions of users' hand and project is to display the user-selected area from the capturing material. Hand recognition is composed of three steps: (i) the region occupied by users' hand is extracted from an image, (ii) the fingertips of the extracted hand region are analyzed using k-curvature algorithm, and (iii) the height of the fingertip is estimated using the depth image from Kinect. The height of the fingertip informs whether users' finger touched the surface of the target. The region captured by the fingertip is clipped from the image and stored as the target image. The excellence of our hand recognition algorithm is proved through a user test.
Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.
최근 가상현실 기술의 발전으로 가상의 3D 객체와 자연스러운 상호작용이 가능하도록 하는 사용자 친화적인 손 제스처 인터페이스에 대한 연구가 활발히 진행되고 있다. 그러나 대부분의 연구는 단순하고 적은 종류의 손 제스처만 지원되고 있는 실정이다. 본 논문은 가상환경에서 3D 객체와 보다 직관적인 방식의 손 제스처 인터페이스 방법을 제안한다. 손 제스처 인식을 위 하여 먼저 전처리 과정을 거친 다양한 손 데이터를 이진 결정트리로 1차 분류를 한다. 분류된 데이 터는 리샘플링을 한 다음 체인코드를 생성하고 이에 대한 히스토그램으로 특징 데이터를 구성한다. 이를 기반으로 학습된 MCSVM을 통해 2차 분류를 수행하여 제스처를 인식한다. 본 방법의 검증을 위하여 3D 블록을 손 제스처를 통하여 조작하는 ‘Virtual Block’이라는 게임을 구현하여 실험한 결 과 16개의 제스처에 대해 99.2%의 인식률을 보였으며 기존의 인터페이스보다 직관적이고 사용 자 친화적임을 알 수 있었다.
본 논문에서는 키보드나 마우스를 이용하지 않고 손 포즈나 동작으로 직관적인 사용자 인터 페이스를 제공하기 위한 실시간 손 포즈 인식 방법을 제안한다. 먼저 깊이 카메라 입력영상에서 왼손과 오른손의 영역을 분할 및 잡음 보정 후 각 손 영역에 대하여 손 회전각과 손 중심점을 계산한다. 그리고 손 중심점에서 일정간격으로 원을 확장해 나가면서 손 경계 교차점의 중간 지점을 구해 손가락 관절점과 끝점을 검출한다. 마지막으로 앞서 구한 손 정보와 이전 프레임의 손 모델간의 매칭을 수행하여 손 포즈를 인식한 후 다음 프레임을 위하여 손 모델을 갱신한다. 본 방법은 연속된 프레임간의 시간 일관성을 이용하여 이전 프레임의 손 모델 정보를 통하여 은닉된 손가락의 예측이 가능하다. 양손을 사용하여 은닉된 손가락을 가진 다양한 손 포즈에 대해 실험한 결과 제안 방법은 평균 95% 이상의 정확도로 32 fps 이상의 성능을 보였다. 제안 방법은 프리젠테이션, 광고, 교육, 게임 등의 응용분야에서 비접촉식 입력 인터페이스로 사용될 수 있다.
본 논문에서는 사용자의 손을 인식하여 가상현실 게임 환경에서 가상의 손을 제어할 수 있는 방법을 제안한다. 카메라를 통해 획득한 영상을 통하여 사용자의 손 이동과 가리키는 방향에 대한 정보를 획득하고 이를 이용하여 가상의 손을 게임 화면에 나타낸다. 사용자의 손의 움직임은 가상의 손이 물건을 선택하고 옮기도록 하는 입력 인터페이스로 활용할 수 있다. 제안하는 방법은 비전 기반 손 인식 기법으로 먼저 RGB 컬러영역에서 HSV 컬러영역으로 입력영상을 변환하고 H, S 값에 대한 이중 임계값과 연결 요소 분석을 이용하여 손 영역을 분할한다. 다음으로 분할된 영역에 대하여 0, 1차 모멘트를 적용하고 이를 이용하여 손 영역에 대한 무게 중심점을 구한다. 구해진 무게중심점은 손의 중심에 위치하게 되며, 분할된 손 영역의 픽셀 집합 중 무게중심점으로부터 멀리 떨어진 픽셀들을 손가락의 끝점으로 인식한다. 마지막으로 무게중심점과 손 끝점에 대한 벡터를 통하여 손의 축을 구한다. 인식 안정성과 성능을 높이기 위하여 누적 버퍼를 이용한 떨림 보정과 경계상자를 이용한 처리 영역을 설정하였다. 본 논문의 방법은 기존의 비전 기술을 통한 손 인식 방법들에 비하여 별도의 착용 마커를 두지 않고 실시간으로 처리가 가능하다. 다양한 입력 영상들에 대한 실험 결과는 제안 기법으로 정확하게 손을 분할하고, 안정된 인식 결과를 고속으로 처리할 수 있음을 보여주었다.
While increasing demand of the service for the disabled and the elderly people, assistive technologies have been developed rapidly. The natural signal of human such as voice or gesture has been applied to the system for assisting the disabled and the elderly people. As an example of such kind of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in KAIST[1]. This system is a vision-based hand gesture recognition system for controlling home appliances such as television, lamp and curtain. One of the most important technologies of the system is the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT) learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new user, the most proper recognition model among several well trained models is selected using model selection algorithm and incrementally adapted to the user’s hand gesture. For the general performance of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository. For the performance of hand gesture recognition, we tested using hand gesture data which is collected from 10 people for 15 days. The experimental results show that the classification and user adaptation performance of proposed algorithm is better than general fuzzy decision tree.