The corrosion behavior of Hastelloy C-276 was investigated to identify its applicability for carbon-anode-based oxide reduction (OR), in which Cl2 and O2 are simultaneously evolved at the anode. Under a 30 mL·min-1 Cl2 + 170 mL·min-1 Ar flow, the corrosion rate was less than 1 g·m-2·h-1 up to 500℃, whereas the rate increased exponentially from 500 to 700℃. The effects of the Cl2-O2 composition on the corrosion rate at flow rates of 30 mL·min-1 Cl2, 20 mL·min-1 Cl2 + 10 mL·min-1 O2, and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 with a constant 170 mL·min-1 Ar flow rate at 600℃ was analyzed. Based on the data from an 8 h reaction, the fastest corrosion rate was observed for the 20 mL·min-1 Cl2 + 10 mL·min-1 O2 case, followed by 30 mL·min-1 Cl2 and 10 mL·min-1 Cl2 + 20 mL·min-1 O2. The effects of the chlorine flow rate on the corrosion rate were negligible within the 5–30 mL·min-1 range. A surface morphology analysis revealed the formation of vertical scratches in specimens that reacted under the Cl2-O2 mixed gas condition.