Radioactive mixed waste (RMW) is containing radioactive materials and hazardous materials. Radioactive wastes containing asbestos are include in RMW. These wastes thus must be treated considering both radioactive and hazardous aspects. In this study, a high temperature melt oxidation system consisting of an electric arc furnace and a molten salt oxidation furnace has been developed for the treatment of of radioactive waste containing asbestos. A surrogate waste of the radioactive waste containing asbestos (content of asbestos: 13wt%) was treated in this system. It was melted and fabricated into a glass waste form in the system. Asbestos was not detected in this glass waste form. This means that the asbestos was converted to a glass component in the glass waste form. The waste form was homogeneous glass, and it had a high value of compressive strength (475.13 MPa). It was also confirmed through a leaching test (ANS 16.1) that the waste form had a high chemical durability (Leaching Index > 6). Based on these results, it is considered that the high temperature melt oxidation system will be utilized for the treatment of a significant amount of radioactive waste containing asbestos generated from decommissioning a nuclear power plant.
The recyclability of waste generated in Korea was determined by sampling ten kinds of sludge to analyze its chemical composition and organic content. We also analyzed the regulatory items for waste control laws and soil environmental laws. Investigation of the leaching property revealed that all sludge samples were classified as general waste and the sludge samples were not types of waste that are prohibited or restricted from being recycled. The S1 sample was evaluated as organic sludge upon measuring the organic content and finding it to be 40% or higher; the other samples were deemed inorganic. Organic sludge S2 exceeded the Zn in the second regional standard of soil environmental laws. Among the inorganic sludge samples, S2 and S8 were considered most likely to be recycled because there were no hazardous substances that exceeded the standard. However, they should be recycled safely after the evaluation of their recyclability according to the recycling purpose and method. Especially the S5 sample was deemed difficult to recycle because it exceeded the third regional standard, which is the highest soil standard.
This study evaluated the applications of ecotoxicity for management plan on industrial waste, and suggested the strategy for assessment of the ecotoxicological characteristic. From the results of ecotoxicity for waste synthetic resin, sludge, slag, waste dust, etc. 20 industrial wastes, 15 waste samples were analyzed in ecotoxic. In particular, 8 waste samples (about 62%) among the 13 non-hazardous wastes were confirmed ecotoxic. Therefore, the additional studies are necessary by increasing the number of samples and confirming the various types of waste. The correlation coefficient of arsenic and vanadium was highly estimated that 0.68, 0.44, respectively. The ecotoxicity for wastes should be managed as a comprehensive toxic in the future. Because the wastes has the high potential ecotoxic by the possibility of containing hazardous materials with discharge process and the interaction of heavy metals, ions, salt, and pH and so on. The hazardous characteristic of waste for ecotoxicity should be evaluated through the ecotoxic analysis in 3 steps by the proposed procedure for assessment of ecotoxicological characteristic.
As the industrial and urban development has been accelerated, the issues on Hazardous wastes (HWs) management have become important. HWs that are not included in the code lists are also managed by hazardous characteristics and determination methods in Korea. This study has been performed to investigate corrosive characteristics of hazardous wastes (HWs) depending on pH variations. We considered the type, discharge process and pH of the 14,000 corrosive waste dischargers, of which we visited 60 sites and collected 68 waste acid and alkali samples. Based on results using corrosive testing methods of the USA (EPA Method 1110A) and the Japanese environmental agency (Appendix 8 of the Japan Standard Methods on Specific HWs), it was found that, of total 54 waste acids with pH 2 or below, 47 samples by the USA EPA Methods, and 37 samples by the Japanese testing method exceeded the limit value of the corrosive rate, while 5 waste alkalic samples with pH 12.5 or above did not exceed the limit value of the corrosion rate. Besides, 9 samples with a pH higher than 2 and less than 12.5 failed to meet the corrosive rate limit. It was determined that 17 samples with a pH less than 2, which did not satisfy the standard corrosion rate, gained more weight, due to the acid deposition from acid gas on their exposed surface. Thus, it is assumed that the USA EPA Method is more strictly applicable than the Japanese Method.