검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to satisfy the strengthening automobile exhaust gas regulation and CO2 regulation, the development of eco-friendly vehicles is actively progressing. To cope with these regulations, research on alternative fuel vehicles is being actively conducted. Alternative fuels are one of the best ways to reduce dependence on fossil fuels and respond to emissions and CO2 regulations. Natural gas, one of many alternative fuels, contains methane (CH4) as a main component and has abundant reserves, so it is attracting attention as a fuel that can provide stable long-term supply by replacing fossil fuels. In addition, natural gas has a high octane number, so there is room for improvement in combustion characteristics when used in SI engines, and it has the advantage of reducing harmful emissions and carbon dioxide (CO2) compared to conventional fossil fuels. When using a low-pressure injector in a turbo engine, it is difficult to secure the flow rate of fuel because the pressure difference between the injector and the manifold is small. Therefore, it is necessary to develop a high-pressure injector to improve this. Natural gas is a gaseous fuel and should be developed in consideration of compressible flow, Although the use of a CNG high-pressure injector is required, it is difficult to stabilize the flow due to the Mach disk and shock wave interference caused by compressible flow. If the flow is not stabilized, it is difficult to precisely control the flow. Therefore, it is necessary to develop an injector in consideration of flow characteristics. In this paper, the flow analysis according to the shape change of the injector was conducted to improve the fuel flow rate injected from the 800 kPa high pressure CNG injector.
        4,000원