Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.
In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.
지진의 수평지반운동으로 인해 유체저장탱크에 작용하는 수평하중의 산정에 있어서 유체수심에 대한 탱크저면길이의 비율에 따라 유용하게 사용할 수 있는 근사해법에 대하여 연구하였다 본 연구는 탱크벽체를 강체로 가정하고 구한 속도포텐셜이론을 적용하여 탱크의 지진하중을 산정한다. 유체저장탱크의 수평단면이 연직으로 일정하지만 그 형상은 원형, 직사각형, 불규칙형인 경우로 나누어 해석하였다 우선 주기적 지반운동(조화가진)에 대한 해를 구하고 이를 바탕으로 랜덤지진에 대한 시간영역해를 구하도록 한다. 예제해석결과 지진력은 적용하는 설계응답스펙트럼의 특성 탱크단면형, 수심에 대한 저면길이의 비율등에 따라 차이가 다소있으나 주로 고주파수 유효질량의 관성력이 지배적인 것으로 나타났다. 대체적으로 수심에 대하여 탱크저면길이가 상당히 크거나 작은 경우는 고주파수근사해를 써서 지진력을 효율적으로 산정할 수 있었다.