As a “kind of” mature ship form, planing hull has been widely used in military and civilian areas. Therefore, a reasonable design for planing hull becomes more and more important. For planing hull, resistance and trim are always the most important problems we are concerned with. It affects the planing hull’s economic efficiency and maneuverability very seriously. Instead of the expensive towing tank experiments, the development of computer comprehensive ability allows us to previously apply computational fluid dynamics(CFD)to the ship design. In this paper, the CFD method and Goal Driven Optimization (GDO) were used in the estimations of planing hull resistance and running attitude to provide a possible method for performance computation of planing hull.
From the results of model tests, statistical regression analysis for EHP estimation based on hull form parameters is adopted in this study. From this result, the method for estimation of EHP and optimization of hull form parameters at the initial design stage of fishing boats is developed. This method is applied to two standard fishing boats with chine lines. The EHP s are estimated and compared to experimental results. From the optimization of four principal hull form parameters of these fishing boats, approximately 19% of resistance reduction at the design speed is achieved and thus certifies that this method can be used efficiently for the initial design of hull forms of fishing boats.
This paper presents the method for developing an optimum hull form with minimum wave resistance using SQP( sequential quadratic programming) as an optimization technique. The wave resistance is evaluated by a Rankine source panel method with non-linear free surface conditions and the ITTC 1957 friction line is used to predict the frictional resistance coefficient. The geometry of the hull surface is represented and modified using NURBS(Non-Uniform Rational B-Spline) surface patches. To verify the validity of the developed program the numerical calculations for Wigley hull and Series 60 Cb=0.6 hull are performed and the results obtained after the numerical calculations are compared with the initial hulls.