검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.02 KCI 등재 서비스 종료(열람 제한)
        고객 유형 분석에 쓰이는 다양한 데이터 분석 방법은 고객들을 위한 맞춤형 콘텐츠를 기획하고, 보다편리한 서비스를 제공하기 위하여 고객들의 유형과 특성을 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 정보의 손실을 줄이기 위한 일환으로 정보 엔트로피를 확장하여 속성의 불확실성을 이용한k-modes 군집분석 알고리즘을 제안한다. 따라서 속성에 대한 유사도의 측정은 두 가지의 측면에서 고려되어진다. 하나는 각 분할의 중심에 대한 각 속성간의 불확실성을 측정하는 것이고, 다른 하나는 각속성이 가지는 불확실성에 대한 확률적 분포에 대한 불확실성을 측정하는 것이다. 특히 속성내의 불확실성은 속성의 엔트로피를 확률적 정보로 변환하여 불확실성을 측정하기 때문에 최종적인 불확실성은비확률적인 척도와 확률적인 척도에서 고려되어 진다. 여러 실험과 척도를 통하여 제안한 알고리즘의정확도가 최적의 초기치를 기반으로 군집분석을 수행한 결과에 준수함을 보인다.