방사선 치료 전 환자 위치 확인을 위해 수행하는 콘빔 CT 촬영에서 환자 선량 감소를 위해 Sparse view CT가 사용되고 있다. 본 연구는 시뮬레이션과 실험을 통해 선형보간법과 inpainting 방법을 이용하여 사이 노그램의 sparse 데이터 복원하고 평가하는 것이다. 사이노그램 복원은 여러 간격의 각도로 획득된 영상에 적용되었다. 복원된 사이노그램은 역투영재구성법으로 재구성되었고, 그 결과를 평균제곱근오차와 영상의 프로파일로 나타내었다. 결과에 따르면, 평균제곱근오차와 영상 프로파일은 투영 각도와 복원법에 의존하 였다. 시뮬레이션과 실험 결과에서 inpainting 복원법은 선형보간법에 비해 사이노그램의 복원 측면에서 개 선된 결과를 보여주었다. 따라서, inpainting 방법은 환자 선량을 감소시키면서 영상화질을 유지시키는데 기 여할 수 있을 것이다.
본 논문에서는 표본 기반 영상 인페인팅을 이용하여 틀린그림찾기 게임의 컨텐츠를 자동으로 생성하는 방법을 제안한다. 틀린그림찾기 게임은 원본 영상에서 특정 물체를 제거하거나 색상 을 변경, 혹은 다른 물체로 대치시켜서 새로운 영상을 만든 후 두 영상의 차이점을 찾아내는 게임이다. 표본 기반 영상 인페인팅 기술은 정지 영상에서 의미가 없거나 관심 밖의 피사체를 영상에서 제거하는 역할을 한다. 본 논문에서는 표본 기반 영상 인페인팅을 이용해 물체 제거 문제를 자동화시키는 방법을 제안한다. 실제 구현 및 실험을 통해 틀린그림찾기 영상을 생성한 결과 제안하는 방법이 틀린그림찾기 컨텐츠를 자동 생성하는데 효과적임을 확인하였다.