검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed a model to predict employee turnover intention using data from the 2022 Korean Labor & Income Panel Study (KLIPS) with 2471 participants. CopulaGAN and Isolation Forests were employed for data augmentation and variable importance. A logistic regression model using the augmented data achieved an accuracy of 0.80, precision of 0.60, recall of 0.72, and an F1-score of 0.65. Key variables included Job Satisfaction, Wage Satisfaction, Work Hours, Job Stability, and Job-Related Training. The study highlights the potential of these techniques for enhancing turnover prediction and aiding proactive HR strategies.
        4,000원