검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon neutrality by 2050 was declared and are focusing on developing innovative energy technologies aimed at reducing greenhouse gas emissions. Active investment and research are underway in the full-cycle development of hydrogen energy technologies, including hydrogen production, storage, transportation, and utilization, which is gaining attention as a promising future eco-friendly energy source. The storage density of liquid hydrogen is 70.79kg/m3, which is higher than the 41kg/m3 of compressed hydrogen at 700bar, making it more suitable for large-scale storage. To store hydrogen at 20K, insulation technologies such as vacuum insulation, powder insulation, or multi-layer insulation (MLI) are typically required. Consequently, there is active research being conducted on the design of insulation systems and materials. However, research on the design for improving the structural integrity of the supports between the inner and outer tanks remains insufficient. n this study, topology optimization was performed for the support design of a liquid hydrogen storage tank using commercial finite element analysis (FEA) software. The structural safety was validated through structural analysis of a simplified self-designed model.
        4,000원
        2.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Globally, there is a concentrated effort to lead in alternative energy technologies. Among various eco-friendly energy sources and carbon-free fuels, hydrogen energy is gaining attention as a clean energy solution for future industries, as its only byproduct is water. There are two primary storage methods: compressing hydrogen gas at high pressure and storing it as a liquid. Research on insulation, including the structural design of multi-layer Insulation (MLI) and vapor-cooled shield (VCS), as well as the materials used for insulation, has been actively conducted. However, studies focused on improving the structural safety of the supports that sustain the structure between the inner and outer tanks have been limited. In this study, a thermal-structural coupled analysis technique for liquid hydrogen storage tanks was developed using commercial finite element analysis software for the design of support structures for liquid hydrogen storage tanks. Six analytical models were created based on varying the number and diameter of the supports with the constant total volume of the supports and a structurally safe support configuration was proposed.
        4,000원