In liquid scintillation counting, sample radioactivity is analyzed by measuring photons emitted from counting vials. Quenching effect lowers photon intensity from samples, which leads to lower counting efficiency. So an appropriate quenching correction according to characteristics of samples is important. In this study, the quenching correction for H-3 analysis was conducted according to the characteristics of paper packaging material leached samples. The leached samples are made from H-3 leaching method which is in the process of development for H-3 contamination screening. There are several ways of quenching correction such as internal standard (IS) method, quench correction curve and triple-to-double coincidence ratio (TDCR) method, etc. For quench correction curve, quenched standard set, which has the same matrix as experimental samples, is needed to be prepared. Each leached sample, however, has different matrix and color depending on condition of leaching experiment, which means that it is not capable of preparing standard set having same matrix with the samples. In this study, the counting samples are used for plotting quench correction curve instead of quenched standard set. Spectral quench parameter of the external standard [SQP(E)] is used as quench indicating parameter (QIP). TDCR and counting efficiencies determined by IS method are used as counting efficiencies. The quench curve of TDCR versus SQP(E) has R2 = 0.55 and the curve of efficiency from IS method versus SQP(E) has R2 = 0.99. TDCR is known for approximate counting efficiency, however, TDCR as counting efficiency needs careful use for H-3 analysis of leached samples. The curve used efficiency from IS method is suitable for H-3 analysis of leached samples. In this study, the quench correction curve is prepared for H-3 analysis of leached samples of paper packaging material. SQP(E), TDCR and efficiency from IS method was used as parameters to plot the quench correction curve, and, the efficiency from IS method is suitable for H-3 analysis of the leached samples. The result of this study can be used for H-3 analysis of leached samples of paper packaging material.
본 연구에서는 LSCF/GDC (20 : 80 vol%) 복합 분리막 표면에 LSC/GDC (50 : 50 vol%) 활성층을 코팅한 후 활성층의 열처리 온도, 두께, 침투법을 이용한 STF 도입이 산소투과 특성에 미치는 영향을 고찰하였다. 활성층 도입은 복합 분리막의 산소 투과 유속을 급격히 증진시켰으며 이는 활성층 성분인 LSC/GDC (50 : 50 vol%)가 전자 전도성 및 표면 산소 분해 반응을 증진시켰기 때문이었다. 활성층의 열처리 온도가 900˚C에서 1000˚C로 증가한 경우, 산소 투과 유속은 증가하였고 이는 분리막과 활성층 사이 그리고 활성층의 결정입간 접촉이 증진하여 산소이온과 전자 흐름을 증진시켰기 때문으로 설명되었다. 코팅층의 두께가 약 10μm에서 약 20μm로 증가한 경우, 산소 투과 유속은 오히려 감소하였는데 이는 코팅층의 두께가 증가할수록 기공을 통한 공기 중의 산소 유입이 어려워지기 때문으로 설명되었다. 또한, 코팅층에 침투법을 이용하여 STF를 도입한 경우가 STF를 도입하지 않은 경우 보다 높은 산소 투과 유속을 보였는데 이는 도입된 STF가 산소 분해하는 표면 반응 속도를 촉진시키기 때문이다. 본 연구로부터 LSC/GDC (50 : 50 vol%) 활성층 코팅 및 특성 제어는 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 증진에 매우 중요함을 확인하였다.