최근 머신러닝은 빅데이터에 대한 분석방법으로서 학습을 통한 지능화된 문제해결 방안으로서 관심이 증가하고 있다. 본 논문은 LBSN 데이터와 머신러닝 방식을 이용하여 토지이용현황을 파악하는 분석을 시도하였다. 도시계획에 있어서 토지이용현황의 파악은 직접적인 현장 조사에 의존해 왔다. 최근 스마트폰 사용자가 증가하면서 등장하고 있는 위치기반 소셜미디어의 자료들 은 토지이용의 상황을 반영하는 빅데이터로서, 머신러닝 방법론은 이들에 대한 자동화된 분석을 할 수 있게 한다. 본 연구에서는 LBSN 자료와 머신러닝 기법을 이용하여 토지이용을 예측하는 모델을 개발하여 실제 토지이용현황 자료와의 비교분석을 수행하였다. 이러한 분석을 통해 LBSN자료를 이용한 토지이용현황의 자동화된 분석 방안에 대해 연구하였다.
For formulation of the rational land us2 plan in regional base, it is a basic and prior condition to categorize total planning area into some functional subregions by purposely-selected indicators. As one of quantitive approaches to the areal categorization in rural area, Principal Component Analysis(PCA) was introduced and testified its applicability through a case study on Sunheungdistrict(called as myun in Korea) area, Youngpoong-county, Kyungbuk-province, Korea. Areal analysis by PCA was carried out on rurality and urbanity of parish-level area(ri in Korea) respectively. By use of PCA analysis results, classifying matrix was made through categorization of both index scores. Among 18 ri's of the case study area, 12 was classified as rural-dominated areas, 2 as urban- dominated areas, and reamaining 3 as intermediate areas.