MILD (Moderate and Intense Low oxygen Dilution) combustion using high temperature exhaust gas recirculation is applied to solid fuels of dried sewage sludge and pulverized coal combustion to investigate the effect of reduction of NOx emission in a pilot scale combustor. High temperature exhaust gas recirculation is accomplished by entraining high temperature exhaust gas to air jets at just exit of the combustion chamber without a heat exchanger. High temperature exhaust gas recirculation makes the solid fuel flame stable and extremely uniform color and uniform temperature distribution. NOx concentration at the combustor exit was 62% and 40% less in the high temperature exhaust recirculation MILD combustion compared with the conventional combustion using air jet only for sewage sludge and pulverized coal respectively.
In the present study, MILD (Moderate and Intense Low oxygen Dilution) combustion technology is adopted as one of the most effective tool for reduction of NOx emission in solid fuel combustion. We tried to achieve MILD combustion using the high temperature exhaust recirculation without any heat exchanger for preheating air. High temperature exhaust recirculation is accomplished by entraining the high temperature exhaust gas to air jets at just exit of the combustion chamber. This high temperature exhaust recirculation could recirculate heat and inert exhaust gas simultaneously. MILD combustion using the recirculation of the high temperature exhaust gas is experimented to investigate the effect of low NOx emission for the recycled solid fuel of the dried sewage sludge and pulverized coal. NOx emission could be reduced drastically by using this advanced combustion technique. Maximum 68% and 57% of NOx reduction was achieved for sewage sludge and pulverized coal respectively, in the high temperature exhaust recirculation MILD combustion compared with the conventional combustion using air jet only. This type of MILD combustion makes the apparent flames of both solid fuels extremely uniform without high temperature flamelet.