Recently, M/G/1 priority queues with a finite buffer for high-priority customers and an infinite buffer for low-priority customers have applied to the analysis of communication systems with two heterogeneous traffics : delay-sensitive traffic and loss-sensitive traffic. However, these studies are limited to M/G/1 priority queues with finite and infinite buffers under a work-conserving priority discipline such as the nonpreemptive or preemptive resume priority discipline. In many situations, if a service is preempted, then the preempted service should be completely repeated when the server is available for it. This study extends the previous studies to M/G/1 priority queues with finite and infinite buffers under the preemptive repeat-different and preemptive repeat-identical priority disciplines. We derive the loss probability of high-priority customers and the waiting time distributions of high- and low-priority customers. In order to do this, we utilize the delay cycle analysis of finite-buffer M/G/1/K queues, which has been recently developed for the analysis of M/G/1 priority queues with finite and infinite buffers, and combine it with the analysis of the service time structure of a low-priority customer for the preemptive-repeat and preemptive-identical priority disciplines. We also present numerical examples to explore the impact of the size of the finite buffer and the arrival rates and service distributions of both classes on the system performance for various preemptive priority disciplines.
A steady-state controllable M/G/1 queueing model operating under the (TN) policy is considered where the (TN) policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or the time instant when Nth customer arrives at the system after T time units elapsed without customers’ arrivals during that time period. After deriving the necessary system characteristics such as the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time in the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers’ waiting cost in the system and the server’s removal and activating cost are defined. Then, the optimal values of the decision variables included in the operating policies are determined by minimizing the total expected cost function per unit time to operate the system under consideration.
Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented
Us ing the known result of the expected bllsy period for the triadic Min (N, T, 0) operating po licy applied to a controllable M/GI1 queueing model, its upper and lower bounds are derived to approximate its corresponding ac tual value. 80th bounds are rep
Using the results of the expected busy periods for the dyadic Min(N, D) and Max(N, D) operating policies in a controllable M/G/1 queueing model, an important relation between them is derived. The derived relation represents the complementary property betw
The expected busy period for the controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy is derived by using a new concept so called “the pseudo probability density function.” In order to justify the proposed approaches for the
The expected busy period for the controllable M/G/1 queueing model operating under the triadic policy is derived by using the pseudo probability density function which is totally different from the actual probability density function. In order to justif