A steady-state controllable M/G/1 queueing model operating under the (TN) policy is considered where the (TN) policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or the time instant when Nth customer arrives at the system after T time units elapsed without customers’ arrivals during that time period. After deriving the necessary system characteristics such as the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time in the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers’ waiting cost in the system and the server’s removal and activating cost are defined. Then, the optimal values of the decision variables included in the operating policies are determined by minimizing the total expected cost function per unit time to operate the system under consideration.
Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented
Using the results of the expected busy periods for the dyadic Min(N, D) and Max(N, D) operating policies in a controllable M/G/1 queueing model, an important relation between them is derived. The derived relation represents the complementary property betw
The expected busy period for the controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy is derived by using a new concept so called “the pseudo probability density function.” In order to justify the proposed approaches for the
The expected busy period for the controllable M/G/1 queueing model operating under the triadic policy is derived by using the pseudo probability density function which is totally different from the actual probability density function. In order to justif