검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        블록 매칭 및 3D 필터링(BM3D) 알고리즘은 단일 필터의 문제점을 보완하기 위하여 non-local means 기반으로 만들 어진 융합형 노이즈 제거 알고리즘이다. 하지만, 그 수식 인자의 조절에 관한 연구는 이루어지지 않고 있어 본 연구에서는 자기공명영상에서 발생하는 Rician 노이즈를 제거하기 위해 BM3D 알고리즘의 평활화 정도를 결정하는 노이즈 전력 스펙 트럼 밀도(noise power spectrum density,  )에 대한 최적화를 진행하고자 하였다. MRiLab 시뮬레이션 프로그램을 이 용하여 뇌 조직을 모사할 수 있는 뇌척수액(cerebrospinal fluid, CSF)/회색질(gray matter, GM)/백질(white matter, WM) 팬텀의 T1 강조영상을 획득하였고, 노이즈 레벨이 0.1, 0.15, 0.2, 0.25, 그리고 0.3인 Rician 노이즈를 각각 부가 한 후, BM3D 알고리즘의  값을 0.01부터 0.99까지 0.01씩 증가시키며 각각의 노이즈가 부가된 영상에 적용하였다. 정량 적 평가를 통해 최적화 값을 선정하기 위하여 CSF, GM, WM, 그리고 배경 영역에 관심 영역을 설정한 후 조직별 신호 대 잡음비(signal to noise ratio, SNR), 총 변동계수(coefficient of variation, COV), 그리고 평균 제곱근 오차(root mean square error, RMSE)를 측정하였다. 결과적으로, 조직별로 계산된 SNR, COV, 그리고 RMSE를 종합적으로 평가 했을 때 모든 조직에서 노이즈 레벨 0.1부터 0.3까지 증가함에 따라  값 또한 함께 증가하는 경향이 나타났으며 일정  값 이상에서는 노이즈뿐만 아니라 영상신호까지 함께 제거되어 개선 폭이 감소하는 것으로 관찰되었으며, 노이즈 레벨에 따라 각각 0.09, 0.13, 0.17, 0.21, 그리고 0.25의  값이 설정된 BM3D 알고리즘이 적용되었을 때 가장 합리적인 영상 특성을 보이는 것으로 나타났다. 결론적으로, 효과적인 노이즈 제거를 위해서 고정된 값이 아닌 노이즈 레벨에 따른 적합한 값을 적용해야 함을 증명할 수 있었다.
        4,000원
        2.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 자기공명영상 획득을 위한 시뮬레이션 도구가 개발되어 오랜 시간이 소요되는 임상 연구를 대체할 수 있게 되었다. 이에 본 연구에서는 MRiLab 시뮬레이션을 사용하여 부가인자인 에코 시간의 변화에 따라 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하여 영상의 신호 및 노이즈의 변화를 정량적으로 평가하고 경향성을 파악하고자 한다. 이를 위해 실제 MRI 장비를 기반으로 새롭게 개발된 MRiLab simulation tool을 사용하여 모든 파라미터를 같게 고정한 후 TE만을 20~95 ms범위에서 5 ms 간격으로 각각 설정하여 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하였다. 획득된 영상들의 신호 및 노이즈 특성 변화를 정량적으로 평가하기 위해 신호대잡음비 및 대조대잡음비를 측정하였다. 결과적으로, TE가 증가할수록 SNR은 감소하고 CNR은 증가하는 경향을 보였다. 이는 TE가 증가할수록 관심 영역으로 설정된 뇌척 수액 신호는 일정하게 유지되는 반면 노이즈는 증가하였으며, 백그라운드로 설정된 백질의 경우 신호가 감소함과 동시에 노이즈가 증가한 것이 원인으로 분석된다. 결론적으로, 진단에 용이한 경사에코 펄스 시퀀스가 적용된 뇌 T2 강조 영상을 획득하기 위해서는 그 목적에 따라 적합한 TE를 설정하는 것이 중요함을 확인하였다.
        4,000원