To address the issues of slow magnetization current tracking speed, prolonged magnetization time, and low accuracy during magnetic particle testing of ship castings, forgings, and welded components, this study designed a high-precision rapid current tracking control system. By integrating the predictive characteristics of the Newton interpolation algorithm with the robustness of PID control, a compound control algorithm with a pre-judgment mechanism was developed. An innovative three-phase zero-crossing detection circuit architecture was also implemented, combining high-speed A/D converters and CS5460 chips to optimize current tracking methods, resolving the conflict between initial tracking phase deviation and dynamic process overshoot in conventional approaches. Experimental results demonstrated that this method significantly improves magnetization speed, achieving target current tracking within 0.5 seconds with errors below 2%, meeting the design requirements for non-destructive testing in ship welding applications.