검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fluid motion within the internal combustion engine cylinder plays a major role in controlling the fuel/air mixing and combustion processes in spark-ignition engines, and the combustion processes in compressionignition engines. In-cylinder flow is quite unstable and varies from one cycle to another. Various methods of in-cylinder flow measurement and fuel/air mixing characterization have been developed during the past few decades. In particular, laser based flow diagnostic techniques have been utilized for this purpose. This study will focus on the quantification of spark-ignition engine in-cylinder flow using the laser based flow diagnostic techniques. The measurement methods, including high speed flow visualization and laser Doppler velocimetry (LDV), will be discussed.
        4,000원
        2.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of intake system on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same head, cylinder, and the piston were used to examine turbulence characteristics in two different intake systems. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the slightly offset direction of the intake system produced higher in-cylinder velocities on the +x-axis side of the cylinder which caused some asymmetric flow patterns about the z-axis. Higher levels of turbulent kinetic energy prevailed in zones of mean velocity collisions and regions where significant directional changes in the mean velocity patterns occurred.
        4,000원
        3.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In-cylinder flows in a motored 3.5L four-valve SI engine are investigated quantitatively using three-dimensional LDV system to determine how intake system affects the flow field. For this study, the same engine head, cylinder, and piston are used. The purpose of this work is to develop quantitative methods which correlate in-cylinder flows to engine performance. The LDV results reveal that collision regions and zones around vortices can be traced as the origins of turbulent kinetic energy. High levels of turbulent kinetic energy are found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke.
        4,000원