검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2012.08 KCI 등재 서비스 종료(열람 제한)
        Measuring task complexity of movement skill is an important factor to evaluate a difficulty of learning and/or imitating a task for autonomous robots. Although many complexity-measures are proposed in research areas such as neuroscience, physics, computer science, and biology, there have been little attention on the robotic tasks. To cope with measuring complexity of robotic task, we propose an information-theoretic measure for task complexity of movement skills. By modeling proprioceptive as well as exteroceptive sensor data as multivariate Gaussian distribution, movements of a task can be modeled as probabilistic model. Additionally, complexity of temporal variations is modeled by sampling in time and modeling as individual random variables. To evaluate our proposed complexity measure, several experiments are performed on the real robotic movement tasks.