The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive ion and ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and powders were synthesized. Sintering these powders at for 5 hours produced 97% dense ITO bodies.
In order to fabricate a high density sintered body of ITO, nano-sized ITO powders were synthesized by coprecipitation methods. Aqueous solutions of indium and tin salts were mixed and coprecipitated by changing their pH. Coprecipitated ITO powders possessed 20-30 nm crystallite size and a relatively high BET value however, aggregation of particles were occurred. Therefore, a novel recrystallization technique was applied in order to eliminate the aggregates. The recrystallized ITO material consists of a little bit larger needlelike crystals, , and it possesses a higher BET value compared to the plain coprecipitated material . Metastable phase formation and higher content of aggregated particles were observed in the coprecipitated materials. Densification was complete after 5 hour sintering at for the recrystallized powders while densities of the coprecipitated powders were below