검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2016.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A commercial NiO (green nickel oxide, 86 wt% Ni) powder was reduced using a batch-type fluidized-bed reactor in a temperature range of 500 to 600 oC and in a residence time range of 5 to 90 min. The reduction rate increased with increases in temperature; however, agglomeration and sintering (sticking) of Ni particles noticeably took place at high temperatures above 600 oC. An increasing tendency toward sticking was also observed at long residence times. In order to reduce the oxygen content in the powder to a level below 1 % without any sticking problems, which can lead to defluidization, proper temperature and residence time for a stable fluidized-bed operation should be established. In this study, these values were found to be 550 oC and 60 min, respectively. Another important condition is the specific gas consumption rate, i.e. the volume amount (Nm3) of hydrogen gas used to reduce 1 ton of Green NiO ore. The optimum gas consumption rate was found to be 5,000 Nm3/ton-NiO for the complete reduction. The Avrami model was applied to this study; experimental data are most closely fitted with an exponent (m) of 0.6 ± 0.01 and with an overall rate constant (k) in the range of 0.35~0.45, depending on the temperature.
        4,000원