검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The vertical distributions of nitrifying bacteria in aerobic fixed biofilm were investigated to evaluate the relationship between nitrification performance and microbial community at different HRT. Fluorescent in situ hybridization (FISH) and portable ion selective microelectrode system were adopted to analyze microbial communities and ions profiles according to the biofilm depth. Cilia media packed MLE (Modified Ludzack-Ettinger) like reactor composed of anoxic, aerobic Ⅰ/Ⅱ was operated with synthetic wastewater having COD 200 mg/L and NH4 +-N 40 mg/L at HRT of 6 hrs and 4 hrs. Total biofilm thickness of aerobic Ⅰ, Ⅱ reactor at 4 hrs condition was over two times than that of 6 hrs condition due to the sufficient substrate supply at 4 hrs condition (6 hrs; aerobic Ⅰ 380 ㎛ and Ⅱ 400 ㎛, 4 hrs; aerobic Ⅰ 830 ㎛ and Ⅱ 1040 ㎛). As deepen the biofilm detection point, the ratio of ammonia oxidizing bacteria (AOB) was decreased while the ratio of nitrite oxidizing bacteria (NOB) was maintained similar distribution at both HRT condition. The ratio of AOB was higher at 4 hrs than 6 hrs condition and NH4 +-N removal efficiency was also higher at 4 hrs with 89.2% than 65.4% of 6 hrs. However, the ratio of NOB was decreased when HRT was reduced from 6 hrs to 4 hrs and NO2 --N accumulation was observed at 4 hrs condition. Therefore, it is considered that insufficient HRT condition could supply sufficient substrate and enrichment of AOB in all depth of fixed biofilm but cause decrease of NOB and nitrite accumulation.
        2.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        The ion selective microelectrodes (ISME) have been applied to observe the continuous profiles of NO3-N and NH4-N in bulk solutions or biofilms. In order to evaluate the performance and applicability of ion concentration measuring system, the characteristics, such as slope of calibration curve, detection limit and potentiometric selectivity coefficient were investigated. The slopes of calibration curve showed high degree of correspondence for each target ion concentrations. And the detection limits of nitrate and ammonia ion selective microelectrode were 10-4.7 M and 10-4.4 M, respectively. These ion selective microelectrodes were proved that their own performance could be maintained for 16 days after making. NO3-N and NH4-N selective microelectrodes were also adapted to detect the continuous ion profiles of cilia media packed MLE (Modified Ludzack-Ettinger) process. And the monitored nitrate and ammonia ion profiles with the ion selective microelectrode were stable and well corresponded to the results with conventional ion chromatograph. However, the electric potential was unstable until 8 hr because of the unknown noise. The tip shape and performance of the ion selective microelectrode was stably kept over 2 days continuous monitoring.
        3.
        2009.06 KCI 등재 서비스 종료(열람 제한)
        Lab-scale Electrodialysis(ED) system with different membranes combined with before or after pyroma process were carried out to remove nitrate from two pickling acid wastewater containing high concentrations of NO3-(≈150,000 mg/L) and F-(≈160,000 mg/L) and some heavy metals(Fe, Ti, and Cr). The ED system before Pyroma process(Sample A) was not successful in NO3- removal due to cation membrane fouling by the heavy metals, whereas, in the ED system after Pyroma process(Sample B), about 98% of nitrate was removed because of relatively low NO3- concentration (about 30,000 mg/L) and no heavy metals. Mono-selective membranes(CIMS/ACS) in ED system have no selectivity for nitrate compared to divalent-selective membranes(CMX/AMX). The operation time for nitrate removal time decreased with increasing the applied voltage from 10V to 15V with no difference in the nitrate removal rate between both voltages. Nitrate adsorption of a strong-base anion exchange resin of Cl- type was also conducted. The Freundlich model(R2 > 0.996) was fitted better than Langmuir model(R2 > 0.984) to the adsorption data. The maximum adsorption capacity (Q0) was 492 mg/g for Sample A and 111 mg/g for Sample B due to the difference in initial nitrate concentrations between the two wastewater samples. In the regeneration of ion exchange resins, the nitrate removal rate in the pickling acid wastewater decreased as the adsorption step was repeated because certain amount of adsorbed NO3- remained in the resins in spite of several desorption steps for regeneration. In conclusion, the optimum system configuration to treat pickling acid wastewater from stainless-steel industry is the multi-processes of the Pyroma-Electrodialysis-Ion exchange.